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Abstract

Double-diffusive natural convection in a horizontal enclosure is studied numer-
ically with the use of Boundary Element Method. The enclosure is heated and
cooled along vertical walls, while horizontal walls are maintained at different con-
centration values. The Brinkman model is used to simulate the fluid flow through
porous media, the density variation is taken into account by the Boussinesq approx-
imation. The governing parameters of the problem are the Darcy number, porous
Rayleigh number, Lewis number and buoyancy coefficient. Different flow regimes
for thermal and solutal dominated flows are demonstrated for different values of
governing parameters. The results are compared to those in published studies,
obtained with other approximative methods.
Keywords: Boundary Element Method, porous medium, double-diffusive natural
convection, Brinkman model.

1 Introduction

Double-diffusive natural convection in a saturated porous media is of fundamen-
tal importance in many engineering branches e.g. civil engineering, mechanical
engineering, chemical engineering. Several problems in nature or industry can be
modeled as convective flow in enclosure filled with porous media such as under-
ground spreading of pollutants, geophysical systems, fuel storage installations. In
general two main configurations have been considered in the literature: heat and
mass gradients are imposed horizontally along the enclosure or heat and mass gra-
dients are imposed vertically along the height of the enclosure. Only few recently
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Figure 1: Geometry with boundary conditions for convection with horizontal tem-
perature and vertical solutal gradient.

published studies are dealing cross relation between the temperature and solutal
gradient (temperature or concentration gradient imposed horizontally and concen-
tration or temperature gradient imposed vertically) [1–3]. In the studies is shown,
that the competition between the thermal and solutal force produce very complex
flow patterns.

In the present work the numerical results for heat and solute transfer in a hor-
izontal cavity of aspect ratio A = 2, subjected to cross temperature and solute
gradients are presented. In the analysis the Brinkman model is adopted while the
governing set of equations is solved with use of the extended Boundary Element
Method. The results are obtained for different governing parameters, the accuracy
of proposed numerical scheme is stated with comparison to some published results.

2 Mathematical model

The physical model with corresponding boundary conditions is shown in Figure 1.
The problem under consideration is a two dimensional enclosure with aspect ratio
A = L/H = 2 filled with fully saturated porous media. The vertical walls are
subjected to temperature differences (T1 and T0 respectively) while the horizontal
walls are subjected to fixed concentrations (high concentration at the bottom C1
and low concentration at the top C0). The main assumptions are that the flow is
incompressible, steady, laminar, the fluid is Newtonian. The solid matrix is nonde-
formable, homogenous, isotropic and in thermal equilibrium with the fluid phase.

Transport phenomena in porous media is mathematically described with conser-
vation equations for mass, momentum, energy and species, which are written at the
macroscopic level considering the fact that only a part of the volume, expressed
with porosity φ, is available for the fluid flow [4]. The general set of equations is

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

66  Boundary Elements and Other Mesh Reduction Methods XXX



given as:
• Continuity:
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The parameters, used above are: vi volume-averaged velocity, xi the i-th coor-
dinate, φ porosity, t time, ρ density, ν kinematic viscosity, ∂p/∂xi the pressure
gradient, gi gravity and K permeability of porous media. Parameters cf = (ρc)f
and cs = (ρc)s are the heat capacities for the fluid and solid phases, respectively, T
is temperature, λe the effective thermal conductivity of the porous media given as
λe = φλf +(1−φ)λs , where λf and λs are thermal conductivities for the fluid and
solid phases, respectively. In the final equation C stands for concentration, and D

for mass diffusivity. In the momentum equation (2), the additional Brinkman vis-
cous term is included, which express the viscous resistance or viscous drag force
exerted by the solid phase on the flowing fluid at their contact surfaces. The den-
sity of the fluid depends only on temperature and concentration variations and is
described with Boussinesq approximation as:

ρ(T ,C) = ρ0[1 − βT (T − T0) − βC(C − C0)], (5)

where βT and βC are volumetric thermal and concentration expansion coefficients
respectively. The equations are coupled through the term F in the momentum
equation, which is the density difference function and includes the expression (5)
written above.

The boundary conditions for the governing equations can be written as:
• left wall

x = 0; vx = vy = 0, T = 1,
∂C

∂x
= 0, (6)

• right wall

x = 2; vx = vy = 0, T = 0,
∂C

∂x
= 0, (7)
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• bottom wall

y = 0; vx = vy = 0,
∂T

∂y
= 0, C = 1, (8)

• top wall

y = 2; vx = vy = 0,
∂T

∂y
= 0, C = 0. (9)

The non-slip boundary conditions are prescribed at the impermeable walls of the
enclosure. Along the vertical walls the constant temperatures and adiabatic con-
ditions are assumed. The constant species concentrations are assumed along the
horizontal walls and zero mass fluxes at the vertical walls of the enclosure.

3 Numerical procedure

The governing set of equations (1), (2), (3) and (4) is solved using the extended
Boundary Element Method, called also the Boundary Domain Integral Method
(BDIM). Since the integral equations are given in terms of variables on the inte-
gration boundaries, as well as within the integration domain, the discretization of
the solution boundary and domain is required. The whole numerical scheme was
already presented at BEM/MRM the details are given in [5], [4]. The main steps
to obtain a solution of the described problem with BDIM are:

• introduction of modified velocity in all governing equations: v′
i = vi/φ,

• introduction of heat diffusivity aT = λe/ρcf and heat capacity σ = φ +
(1 − φ)(ρc)s/(ρc)f in the energy equation,

• separation of velocity field into a constant and variable computational parts
v′
i = v̄′

i + ṽ′
i ,

• separation of material properties (kinematic viscosity, heat diffusivity,
species diffusivity) into a constant and variable parts as: ν = ν̄ + ν̃, aT =
āT + ãT , D = D̄ + D̃,

• transformation of governing equations with use of velocity-vorticity for-
mulation (with introduction of vorticity vector as a curl of velocity field
ω′ = eij∂v′

j /∂xi for the case of planar geometry), which consequently sep-
arates the computational scheme into a kinematic and kinetic computational
parts,

• derivation of integral equations with use of weighting residual technique or
Green fundamental functions, where for the kinematics the elliptic Laplace
fundamental solution and for the kinetics the elliptic diffusion-convective
fundamental solution are used respectively,

• discretization of solution boundary and domain; all boundary domain inte-
gral equations are written for all boundary and domain nodes, where the
variation of field functions within each boundary element and internal cell
is approximated by the use of appropriate interpolation polynomials,

• solution of coupled matrix system with the use of subdomain technique,
where each subdomain consists of four discontinuous 3-node quadratic
boundary elements and one 9-node corner continuous quadratic internal cell.
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The final implicit matrix system for the solution of velocity field and values of
vorticity, temperature and concentration is given for the case of planar geometry as:

• Kinematics:
[H ]{v′

i} = eij[Ht ]{v′
j } − eij[Dj ]{ω′}, (10)

• Vorticity kinetics:
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• Energy kinetics
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• Species kinetics
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The term fj in the vorticity equation describes any contribution arising on account
of nonlinear material properties and is given as fj = ν̃( �∇ × ε̇ij ). The matrix [H ],
[Ht ], [G], [Dj ] and [B] are the influence matrices composed of those integrals
which took over the individual boundary elements and internal cells.

4 Results and discussion

The presented numerical scheme was used to solve a problem of double-diffusive
natural convection due to cross temperature and concentration gradients as shown
in the chapter 2. The governing parameters that define the fluid flow, heat and
solute transfers are:

• aspect ratio A = L/H , where L and H are length and height of the enclosure
respectively,

• Darcy number Da = K/H 2,
• porous Rayleigh number Ra = KgiβT ,
TH/aT ν, where 
T is the tem-

perature difference, aT thermal diffusivity and ν kinematic viscosity,
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• Lewis number Le = aT /D,
• buoyancy coefficient N = βC
C/βT 
T , where 
C is concentration dif-

ference, all other parameters are already described.
In the presented example the results for enclosure of aspect ratio A = 2, Ra = 100,
Da = 10−3, Le = 10 and different values of buoyancy coefficient are presented.
A non-uniform computational mesh 20 × 10 was used with a ratio between the
longest and shortest elements of r = 6. Time-steps of 
t = 10−1 were employed
for all cases, and the convergence criterion is determined as ε = 5 × 10−6. In the
Figure (2) left the streamlines, isotherms and concentration lines for N = 0 and
right for N = −1.5 are shown and in the Figure (3) for N = −2 left and N = −4
right. For the case N = 0, where flow is driven by thermal buoyancy force, the flow
structure consists of one main circulation occupying the entire enclosure. At the
core of the enclosure the concentration gradient reversal is evident, due to strong
flow recirculation. From the temperature filed is evident that the rate of heat trans-
fer is high at the bottom of the hot wall and upper part of the cold wall. The rate of
heat transfer decreases along the hot wall. With increase of buoyancy coefficient N
in negative sense the strength of the flow circulation decreases and starts to bifur-
cate into two weak circulations. Physical explanation for the cases when |N | > 0
is that heavy fluid particles (high concentration) that advected to the upper part
of the enclosure reach the other end and form recirculation. As N decreases the

Figure 2: Streamlines, isotherms and isoconcentrations for A = 2, Ra = 100,
Da = 10−3, Le = 10 and N = 0 (left) and N = −1.5 (right).
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Figure 3: Streamlines, isotherms and isoconcentrations for A = 2, Ra = 100,
Da = 10−3, Le = 10 and N = −2 (left) in N = −4 (right).

heavy particles sink before they arrive at the other end of the enclosure forming
two circulations. With increase of N also the concentration reversal and isotherms
distortion diminish. For N = −4 heat transfer takes place mainly by conduction,
which is evident from the isotherm distribution. The sharp corners in the streamline
presentations in Figure (3) are due to small grid density (20×10 subdomains). For
better graphical presentations denser grids have to be used. Table (1) shows results
for the values of Nusselt and Sherwood numbers for the examples shown in Fig-
ures 2 and 3. As already stated from the graphical presentations, the heat is for
small values of N transfered by conduction, while the solute is transported by the
convection mechanism. The results are compared to the reference [3], where the
same problem is solved for planar and spatial geometry with use of finite differ-
ence method (FDM). The agreement between the results is good, which proves the
accuracy of mathematical model and BDIM.

5 Conclusion

In the paper the results for double-diffusive natural convection in a rectangular
enclosure subjected to cross gradients of temperature and concentration, obtained
with use of extended Boundary Element Method are presented. The results show
that the competition between solutal and thermal force produce complex flow pat-
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Table 1: Nu and Sh values for different N and A = 2, Ra = 100, Le = 10,
Da = 10−3.

N −4 −2 −1.5 −1

Nu Present results 0.49 0.50 0.50 0.52

Ref. [3] − 0.5 0.5 0.55

Sh Present results 1.04 1.17 1.30 1.71

Ref. [3] − 1.2 1.3 1.9

terns. The dependency of buoyancy coefficient on the convective flow in the enclo-
sure is investigated and it is stated that with increase of buoyancy coefficient N in
negative sense the convective motion slows down and approaches the pure dif-
fusion limit. The results are compared to a published study, where the FDM was
used to solve the same problem. Very good agreement between the results is stated,
which indicates that the BDIM could be efficiently used for solving the double-
diffusive natural convection problem in porous media.
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