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Abstract 

Smooth hydrodynamic particle solution seems to be a suitable method for 
solving problems of influence of high temperatures on the FR concrete tunnel 
lining and surrounding rock. This meshless method suffers from one unpleasant 
property: it is not easy to describe the inhomogeneous geometrical boundary 
conditions. In our case, the highly elevated temperature is increasing and 
decreasing in a time scale on the boundary. After reformulating the problem into 
a form obeying boundary conditions being suitable for application of the SPH 
method, the 2D problem can be solved. This restriction to 2D is an impact of 
assumption that the fire is triggered along the length of the axial direction of 
tunnel. This follows from the observation at concrete locations where 
conflagrations inside of the tunnels took part. The most extreme temperature is 
prevailingly considered at 1200°C to fulfill European standards. As the 
mechanical and physical properties change nonlinearly a set of experiments in 
furnaces have been conducted to improve the characteristics of the material of 
tunnel lining and rock. Coupled modeling is applied to conduct convergence 
analysis providing results from experiments and numeric method to be in 
compliance. Simultaneous nonlinear equations are first formulated, involving 
stress analysis, influence of pore pressure, change of temperature, moisture, and 
degree of saturation. Nonlinear mechanical properties are based on the change of 
mechanical parameters, as are available from experimental studies. A couple of 
examples will follow the theory. 
Keywords: smooth particle hydrodynamics method, meshless approach, elevated 
temperature, tunnel lining and surrounding rock, partition of unity. 
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1 Introduction 

The problem of fire defense of tunnel linings stems from the early beginning of 
tunnel construction. In an age where vehicles are now powered by explosive fuel, 
used both in passenger vehicles and freight transport, if an accident occurs then 
there can be a disastrous aftermath to the tunnel lining and sometimes also to the 
surrounding rock both of which can lead to the supporting system of such tunnels 
to become no longer serviceable. A couple of experimental studies are published 
on this topic, although until today experiments of this kind appear to be 
relatively very expensive. The experiments show the overall properties, failure 
strength of material, surface cracking, and other phenomena, which can be seen 
from the outside of the sample tested. Of greater interest to researchers and 
engineers is the knowledge about the process developing inside the sample, 
mainly the reaction of the material to sudden change of temperature on the 
boundary of the sample. This can be solved by some appropriate numerical 
methods. One of the most appropriate for this problem seems to be smoothed 
particle hydrodynamics (SPH), which belongs to mesh-free methods, historically 
developed for astrophysical applications, [1, 2]. The inherent benefit of the SPH 
formulation consists in transformation of partial differential equations to a 
system of linear algebraic using regularization. This transformation is, among 
others, suitable for parallel computations. Recently, SPH has grown into a 
successful and respected numerical tool. In particular, this method does not differ 
between 3D, 2D and 1D problems, as the problems defined in higher order 
spaces can be simulated as easy as that in 1D. An excellent review of the 
advantages and recent progress in SPH can be found in [3, 4]. Some problems 
occur when geometrical boundary conditions should be involved. Takeda et al. 
[5] proposed ghost particle method, in which some particles are located outside 
the domain. Heat conduction problem are solved in [6], where Taylor series 
expansion approximates the regularization kernels.  

2 Regularization of functions and their derivatives   

The concept behind SHP is based on an interpolation scheme. From 
mathematical calculus it is well known, [7], that for each generalized function 
f defined on a domain nRV ⊂ with boundary S  there exists a positive ε  and a 

finite cover NiVN
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Ni ,...,1∈ so that ix Ω∈ ) with measure of εΩ <i  so that on iΩ  there exists 

function )(Ωωε
∞∈Ci , supp i

i Ωωε ∈  (sometimes called cap function) which 
regularize the function f in such a way that f can be expressed as 

Nifff ii
N

i
i

,...,1,*d )()()(
1

==−= ∫∑
=

ε
Ω

ε ωω ξξxξx ,                        (1)  

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

56  Boundary Elements and Other Mesh Reduction Methods XXX



and the left hand side of the latter relation is called the regularization, if εω* is 
the convolution. Recall some basic properties of the regularization: the volume 
of each cap function is unity, is equal to one. If the function f is uniform (equal 
to one) and infinity→ε the regularization turns to be density of the function f , 

for example density of probability. If 0→ε the kernel i
εω  turns to be the Dirac 

function. For each positive ε  the regularization (kernel, cap function) i
εω  can be 

created infinitely differentiable (for definition of types of cap functions, see [7], 
for example).  
     Since different cap functions should be created for different iΩ , the above 

definition becomes inconvenient. In order to improve this put εε ωω ≡i and the 
shape of iΩ remains same for all i , the area of a circle in 2D or the volume of a 
sphere, for example.  Now inside of the domain V select a set of points 

Nii ,...,1, =x , ix is centered at iΩ and a new function F  is defined as 
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which is formally similar to relation (1), so that it fulfils basic properties above 
mentioned. Since the former assumptions take place the function F cannot be 
expected to be equal to f any longer, but a special case: 0→ε in the sense of 
definition of the Dirac function.  
     In our case 2D problem is considered and degrees of freedom are 
concentrated at nodes Niii ,...,1, =∈Ωx , iΩ  are considered as areas of the 
circles in which ix is centered. In the approximation, the smoothed (regularized) 
function F for any physical quantity f is identified with the original function, 
i.e. fF ≡ . Moreover, the kernel εω is simplifies for real calculations and the 
simplification is denoted as εW . Introducing this to (2) and setting 

)( ii ff x= gives: 
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     Equation (3) is the kernel representation to average functional distribution. In 
our next considerations additional properties of εW will be required: 
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     The last property follows from the fact that the order of differential equations, 
which are to be studied, is two, and so is the required regularity (continuity).  
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     Using integration by parts, from the boundary conditions on iΩ∂  it 
immediately follows that  
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     For the sake of simplicity the approximation of the kernel εW  is represented 
by 
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     If we consider volume (area, interval) of an element
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the mass of the element and iρ is the density, using rectangular rule of evaluation 
of integrals yields: 

)(|,|,)()( 22 ij
j

j

i

i

hr
jiiijij

hr
ij

j

jj
ii rW

ffmfrrW
fm

xff
ijij

εε
ρρ

ρ
ρ

∇












+=∇−=== ∑∑

≤≤
xx (6) 

3 Governing equations 

According to [8], the governing equations for coupled heat-seepage-stress 
problem are listed as:  
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where  
     T , p, C  and λ  are the temperature, the pressure, the volumetric heat 
capacity and the thermal conductivity of the lining and surrounding rock, 
respectively; 
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     S , K are the water-supply degree and the hydraulic conductivity, 

respectively; 
     η  is a constant, received from appropriate tests; 

     eff
xσ , eff

yσ and eff
zσ are the effective stresses in x, y and z directions, 

respectively; 
     wC and wρ are the specific heat and the density, respectively, of water.  
     Equation (7) describes continuity, (8) is a diffusion equation for temperature 
distribution, (9) is a diffusion equation for pore pressure, and momentum 
equation has to be added to complete the system of the coupled problem: 

β
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the moving equation for particles is 

α
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v
t

u
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where ααα
oldnew xxu −= i.e. a component of the displacement is difference 

between new and old values of the pertinent components of coordinates. 
     In the sense of previous explanation the above introduced strongly nonlinear 
equations can be solved using iteration at each time step. The way of 
development of temperature due to fire extent at the surface of tunnel lining is 
described from experiments. The only problem in applications of SPH appears to 
be inhomogeneous boundary conditions. At each time step we change the elliptic 
equation of the type 

ΓΩ on    ,in  xxbAx == ,     
where ΓΩ, are domain and its boundary, into 

ΓξΩξξ on  0 ,in  ,, =−=−== xAbcxxcA .    
     In the case of homogeneous boundary conditions being prescribed, the 
problem is easily solvable. Note that the operator A can be considered linear at 
each time step (it actually is pseudo-linear). 

4 Young’s modulus  

The spalling of the concrete lining during combustion in a tunnel and 
deterioration of the material properties is not easy to obtain from experiments. 
The only information, which appears to be reliable, is the distribution of Young’s 
modulus in relation to the temperature. Also, this information is not quite precise 
as it depends on the position of a point in which the measurement takes part 
inside the lining. There are a couple of authors who tried to express the relation 
between the values of Young’s modulus and higher temperature. Note that the 
temperature is considered between room temperature and 1200°C, according to 
European standards [9]. 
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     The test results of elastic modulus of concrete at high temperature are 
compared in [10]. It can be noted that, except for HPC, the elastic modulus 
decreases monotonically as the temperature increases, unlike the behavior of the 
compressive strength. Generally speaking, the elastic modulus has no or a little 
effect till temperature of 70°C after that it descends approximately in a linear 
way with the increase of the temperature. The secant modulus at the stress of 
0.4fc

T was assumed as the elastic modulus by Lu [11] and tri-linear expression 
between Ec

T and the temperature T was given as follows: 
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where Ec
T and Ec are the elastic modulus of concrete at elevated and room 

temperature, respectively.  
     Xiao and König [10], indicated that the elastic modulus of HPC degraded 
much more obviously than that of NSC below 400°C, while above 400°C its 
degradation was almost the same as that of NSC. It was also reported in [12, 13] 
that the type of aggregate would influence the modulus of elasticity distinctively 
and Ec

T could decrease with the increase of water-cement ratio as well. The 
elastic modulus at elevated temperature drops much more greatly for concrete 
cured in water than that of cured in the air. The deterioration of elastic modulus 
seems to have nothing to do with the heating-cooling cycles but is related to the 
maximum elevated temperature during heating [14, 15]. 

5 Example 

The problem of the heating of a lining on the upper side of the tunnel in 
symmetric angle of 90° (45° on each size of the vertical axis) by a temperature of 
1200°C is solved. Standard fiber reinforced concrete with basalt fibers is 
considered, while the surrounding rock possesses material properties of class G4, 
which provides: 
     E = 1000 MPa, Eplast = 800 MPa, Eresidual = 500 MPa, 25.0=ν , 46.0plast =ν , 

025=φ ,  MPa100=C , where the former quantities describe elastic modulus, 
modulus at plastic state, its residual value, elastic Poisson’s ratio, the same at 
plastic state, coefficient of internal friction, and shear strength (cohesion). For 
completeness the material of lining is considered as:  
     E = 27000 MPa, Eplast = 10000 MPa, Eresidual = 5000 MPa, 2.0=ν , 

46.0plast =ν , 035=φ ,  MPa150=C . The density of the concrete is 27 kN/m3, 
the density of the rock is 33 kN/m3.  
     Since both geometric and loading symmetry is obvious, the structure is solved 
as symmetric. In Fig. 1 hypsography of horizontal stresses in a cut of a half of 
the domain are presented. The peak stresses are concentrated to the upper and 
lower part of the lining, while at the center of the lining they almost disappear. 
As the values of stresses are much larger in the lining then in the rock, in the cut 
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from the domain of rock there is no change of horizontal stresses registered. In 
the figure the points at which the variables are calculated are marked. The 
maximum stress is observed on the vertical axis of symmetry and possesses the 
value of 10 MPa in the lining.  
     Figure 2 shows the hypsography of normal horizontal stresses for the 
distribution of temperature 12000 at the upper face of the lining (the same 
loading scheme as in the starting situation) after thirty minutes. Note that ten 
minute intervals are contemplated in which tests of plastic and damage states in 
 

 

Figure 1: Horizontal stresses before fire. 

 
Figure 2: Horizontal stresses after half an hour combustion. 
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the material of both lining and rock are carried out. The latter picture is enlarged 
in order to see in more details the behavior of stresses xσ in the neighborhood of 
the fire.  
     It is obvious from the figure that extreme stresses of 15 MPa are attained at 
the calotte (vault) of the tunnel, where the combustion is concentrated. It is worth 
noting that after approximately two hours of fire the concrete looses its bearing 
capacity and the rock takes over the loading. Rock can also be affected by the 
fire and damage locally. In such conditions the repair and recovery of the tunnel 
can be a complex task takes a long time.  

6 Conclusions 

In this paper the combustion of the concrete lining and the rock surrounding the 
tunnel is solved by the Smooth Particle Hydrodynamics Method. The results are 
partly compared with experiments on concrete slabs burned in a furnace. 
Particularly, influences of fibers from fused basalt are observed and the 
composite with the concrete matrix is evaluated after carrying out tests in 
Innsbruck University. The basalt material seems to be quite suitable for this case 
of endangered concrete linings. The reason is that at lower temperatures it 
behaves as a stiffener of the concrete matrix and overcoming the temperature of 
1000°C it becomes molten and enables vapor to escape from the concrete and not 
cause any larger damage. Consequently, in comparison to other types of fibers, 
fused basalt serves in a proper way. Natural fibers are very suitable for high 
temperatures (they burn out and the vapor can freely dilute in the air) and stiff 
fibers like steel serve as a good reinforcement but are too troublesome in the case 
of influence of high temperatures.  
     The SPH method is perfectly suitable for solving such a problem. This 
method shows very promising time consumption of computer (it is basically low 
in comparing it with other numerical methods), but generally it suffers from one 
undesirable property: inhomogeneous geometrical boundary conditions can be 
respected in the calculus in a complicated way. In our case this type of boundary 
conditions does not play any decisive role. The boundary conditions are declared 
by time changing the source of heat, and the damage in the material is calculated 
at the time-stage.  
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