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Abstract 

The Boundary Element Method (BEM) has been an effective method for 
modelling a number of particular problems which may be described by potential 
flows or, in a quite different vein, by creeping motions. However when it comes 
to moving boundary flows the BEM requires a significant amount of 
computational time. In the context of accelerating the BEM, the Fast Multipole 
Method (FMM) has been used for two and three-dimensional problems but they 
are not yet reported for axisymmetric ones. Our purpose is to present a multipole 
based boundary element method (MM-BEM) for moving boundary problems in 
the axisymmetric case. The proposed method takes advantage of grouping the 
ring sources in the axisymmetric domain, in order to reduce the amount of direct 
computations. Direct computations are only performed when the ring sources are 
located close to the evaluation point. Here, MM-BEM is implemented to 
simulate the impact of a drop onto a liquid surface, modelled assuming potential 
flow. It is shown that the proposed method provides the same results as the 
conventional BEM. 
Keywords: multipole expansion, multipole coefficient, Boundary Element 
Method, potential flow, axisymmetric problem, moving boundary. 

1 Introduction 

A handful of practical applications characterized by moving boundaries can be 
modelled in axisymmetric environment, specifically the applications involving 
drops and bubbles [1–3]. The objective is to keep track of the moving boundary 
at different instants of time. The interest of the axisymmetric formulation lies in 
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the fact that, while keeping the whole three-dimensional physical aspect of the 
problem, the solution is carried out in a two-dimensional domain. Thus, the 
implementation becomes easier and less computational resources are required. 
     The BEM has been an efficient technique for tracking moving boundaries, 
especially when dealing with potential and viscous fluid flow assumptions [4]. 
The method has tremendous advantage that the boundary condition is treated 
neatly and resolved very accurately. However, simulating highly distorted 
interfaces require distributing a large number of nodes, in which case the BEM 
requires a significant amount of computational time. Moreover, if the problem is 
solved at several time sequences the aforesaid issue turns demanding. The 
iterative solver has particular advantage for moving boundary problems, since 
the solution of the previous time step provides a good initial guess for the 
following step. However, the free surfaces are Dirichlet type boundary, for which 
the integral equation is Fredholm integral equation of the first kind, which is not 
sufficiently well conditioned. The numerical solution requires a large number of 
iterations. 
     In the context of accelerating the BEM, the fast iterative solver techniques, 
like FMM, tackles efficiently the issues of time and memory in two and three-
dimensional problems. However, FMM is not applicable for axisymmetric 
problems, due to the presence of ring sources. 
     In this work we implement a multipole method coupled with BEM (MM-BEM) 
for moving boundary flow in the extensively studied application of drop splash, 
wherein a droplet is subjected to impinge on a liquid free surface. The application 
represents an interesting case of highly distorted moving interface and is modelled 
by assuming the potential flow of a fluid in an axisymmetric environment. The 
multipole expansion is first used to separate the ring sources from the evaluation 
point, which in turn enables to make a grouping structure for the ring sources. The 
contribution of a group is then calculated at the axis of symmetry in terms of 
multipole coefficients and this information is efficiently used at the evaluation 
point. In this manner we obtain a fast matrix vector multiplication which is coupled 
with an iterative solver to accelerate the solution procedure. 
     Outline of the paper is as follows. In the second and third sections we present 
the gradient and the multipole formulation of the Dirichlet problem and the 
general features of the MM-BEM technique. The application to liquid drop 
impact is presented in the fourth section. The two last sections consist of 
numerical results and a brief conclusion. 

2 Axisymmetric gradient formulation 

In the context of the potential flow theory, Dirichlet boundary conditions are 
applied to moving free surfaces. The integral equation formulation for the 
Dirichlet problem results in a Fredholm integral equation of the first kind, which 
is not well conditioned in terms of numerical solution. However, this Fredholm 
integral equation can be converted to a second kind equation for the boundary 
distribution of the normal derivative, which is better conditioned. The gradient 
formulation for the Laplace equation is well established [3], and, for 
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completeness, we present it here for the axisymmetric case. Starting with the 
integral equation for the three dimensions Laplace equation defined over the 
surface S which bounds the domain of interest [4] 
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where φ is the velocity potential, G(x,x′)=1/4πr is the free space Green’s 
function and r = |x - x′| is the distance between the evaluation point x and the 
source point x′. Moreover, ϕϕ ∇=∂∂ .n n  denotes the normal derivative with n 
the unit outward normal vector on S, and c(x) depends on the local geometry of S 
at x (c=1/2 if S is regular at x). From eqn (1) an integral equation for the normal 
derivative of the potential at the evaluation point can be derived as 
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     The first and second surface integrals in eqn (2) express boundary distribution 
of point sources and point sources dipoles respectively. This equation is 
hypersingular due to the kernel in the second integral and can get regularized by 
following equivalence between doublet and vortex distributions (see e.g., 
reference [5]) 
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     Let the z-axis in cylindrical polar coordinate system (ρ,φ,z) coincide with the 
axis of revolution of the domain of interest. We assume that the velocity potential 
is rotationally symmetric about the z-axis. The azimuthal component of the outer 
normal vanishes over the boundary S. The velocity potential and its gradient 
depend only on ρ and z. The meridian plane where the evaluation point x lies is 
arbitrary. For sake of simplicity it corresponds here to φ =0. The differential area 
dS is expressed in the form ρ dφ dΓ, where dΓ is the differential arc length along 
the contour Γ of the surface in a meridian plane. An important consequence of 
axial symmetry is to simplify the integrand in the right hand side of eqn (3), since 
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with ∂φ/∂s′ being the tangential component of the velocity, acting here as a 
vortex strength and iφ′ is the unit vector on S at x′ perpendicular to the meridian 
plane. The sense of s, the unit tangent vector, is such that (s,n,iφ) is right-handed 
in that order. Taking into account all the notations and axisymmetric 
simplifications, we recast eqn (2) into the form 
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are free space axisymmetric Green’s function. In the conventional BEM 
formulation, explicit relations for AXG and AXG~ are expressed in terms of complete 
elliptic integrals of the first and second kinds. We rather adopt a multipole 
expansion based grouping technique. 

3 Axisymmetric multipole formulation  

     In this section we describe the multipole techniques for the solution of eqn (5) 
in order to accelerate the matrix vector multiplication for iterative solver. The 
evaluation and source points are first separated and then an azimuthal integration 
is carried out to obtain the axial multipole moments. We begin with the 
expansion of the Green’s function associated with the three dimension Laplace 
equation in spherical coordinates system (r,θ,φ) [6] 
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where εm is the Neumann factor, ε
0
=1 and ε

i
=2 (i=1,2,etc.) and m

nP are the 
associated Legendre functions. To obtain the series expansion of the free space 
axisymmetric Green function AXG we integrate the above series in the azimuthal 
direction, keeping the origin on the axis of symmetry 
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     Since the evaluation point lies in the meridian plane, φ =0 and 
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     Therefore, only the m=0 terms survive and we obtain 
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     The multipole coefficients for the first integral in eqn (5) are obtained by 
substituting eqn (10), written as 
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with Mn(O) being the multipole coefficients at point O due to the ring sources in 
Γ, given by 
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     The series expansion of the second free space axisymmetric Green’s function 
AXG~ is obtained as follows: 
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(13) 
     Integrating the above series in the azimuthal direction, while keeping the 
origin on the axis of symmetry and the evaluation point in the meridian plane, we 
get 
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Only the terms m=1 survive and the eqn (13) becomes 
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     The multipole coefficients for the second integral in eqn (5) are obtained by 
substituting eqn (15), written as 
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where the multipole coefficients are given by 
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     From the above expansions it is clear that the ring sources and the evaluation 
point are separated. Therefore, a grouping structure for the ring sources can be 
employed. The contribution at the evaluation point due to the ring sources in a 
group is calculated using the multipole coefficients corresponding to the group. 
     The above multipole coefficients are derived by assuming that the source ring 
is nearer to the expansion centre O than the evaluation point. In fact in the 
literature they are termed as exterior multipole moments. Since the interest is 
towards maximizing the multipole calculation we use also the interior multipole 
coefficients, which can be derived on the same lines [7]. 
     Admissibility criterion for the multipole calculations depends upon the ratio 
of distance of the group from the expansion centre to that of distance of the 
evaluation point. The distance of the group from the expansion centre is taken as 
the average of the distances of the elements which are contained in the group 
from the expansion centre. The contribution at the evaluation point in group D 
(Figure 1) from the ring sources contained in group A uses the exterior 
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multipoles coefficients for group D computed at expansion centre O. In the vice-
versa case, (ring sources in group D and evaluation point in group A) the 
contribution is calculated by interior multipoles at expansion centre O. 
     The description of the method based on multipole technique is as follows: 
- First, the ring sources are grouped. This has been done by defining an arc 
length parameter along the contour, as shown in Figure 1. 
- Second, the positions of the multipole expansion centres are determined, based 
on the geometry of the problem. For example the points O and O′ are sufficiently 
good choice for the cylindrical geometry (Figure 1). 
- Third, the calculation of the interior and the exterior multipoles for the grouped 
ring sources at the multipole expansion centres are performed. 
- Finally, the contribution at the evaluation point due to a particular group is 
computed by multipole coefficients if the admissibility criterion is satisfied; 
otherwise the direct calculations are used for each element of the group. 
 

z

A

D

O

O

 
Figure 1: Grouping structure and expansion centres for a cylindrical 

geometry. 

4 Application to drop impact 

The impact of a liquid drop onto a liquid surface, which is an example of a 
highly distorted moving interface, is chosen as an application case for the 
multipole based BEM. Numerous theoretical, experimental and numerical 
studies have been performed during more than one century in order to better 
understand this phenomenon which, apart from being interesting and beautiful, is 
of considerable practical importance. Among other numerical techniques, the 
Volume Of Fluid [8], the level-set [9] and the Boundary Element Method [1] 
have been used. 

4.1 Problem statement 

An axisymmetric liquid domain, bounded in the meridian plane (ρ,z) by the 
liquid-gas interface Γ is considered (Figure 2). Due to the impulsive nature of the 
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drop impact, an irrotational flow model is appropriate. A harmonic velocity 
potential subject to Dirichlet boundary conditions, can thus be defined. The local 
time derivative of the velocity potential is calculated by combining the normal 
momentum balance with the Laplace pressure jump to obtain the Bernoulli's 
equation. A dimensionless formulation is used: 
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Figure 2: Initial geometry and potential. The neck region is smoothed. 

     In this equation v is the dimensionless velocity, H is the total curvature and 
Re, Fr and We are respectively the Reynolds, Froude and Weber numbers. The 
drop radius R is adopted as length scale and 

LRρσ  as velocity scale, where σ 
and Lρ  are the surface tension and the liquid density. The ratio between the 
length and velocity scale gives the time scale. Viscous effects are partially taken 
into account as the normal viscous stress appears in eqn (19). The complete 
description of this model can be found in Georgescu et al. [2]. 
     In order to avoid topological change, the falling spherical drop is initially 
placed in contact with the liquid surface. A negligibly small volume of the 
sphere is cut-out and, to avoid a singularity of the capillary pressure, the 
intersection of the sphere with the initially flat liquid surface is smoothed in the 
meridian plane by a circular element (Figure 2). The drop initially falls with a 
constant velocity onto an initially still liquid surface. The discontinuity of the 
velocity potential in the neck region is eliminated by means of the quadratic 
smoothing procedure described by Weiss and Yarin [10]. 

4.2 Solution procedure 

The application represents a transient free-boundary problem that repeatedly 
involves two types of calculations: (a) solution of Laplace equation for normal 
components of the velocity, (b) updating of the potential at the forthcoming time 
step by using time marching scheme of Runge-Kutta and displacement of the 
interface. 
     Within the first type of calculation, the Laplace equation is solved by the 
Boundary Element Method using gradient formulation. First order elements are 
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ϕ = 0
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Γ 
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used to approximate the unknowns. The vortex strength is calculated by 
interpolating the given velocity potential over the interface by the cubic splines. 
The solution is obtained by grouping source/vortex rings using multipole 
techniques discussed in previous section coupled with the GMRES iterative 
solver without preconditioning. In order to maximize the number of multipole 
calculations the multipole coefficients are calculated at two different expansion 
centres. Two expansion centres are used and their positions are evaluated at each 
time step, following the deformation of the interface. The normal velocity 
obtained at previous time step is used as an initial guess for the iterative solver 
for the subsequent time step.  
     Within the second type of calculation, the Bernoulli’s equation is solved by 
4th order explicit Runge-Kutta scheme for the local time derivative of the 
velocity potential. The time steps are chosen according to the stability criterion 
described by Georgescu et al. [2]. The interface position is then updated 
according to the normal velocity component. 

5 Results 

The presented MM-BEM has been implemented for the axisymmetric static 
potential problems. With 18 terms in the expansion, this method provides 
accurate results when compared to analytical solution of Dirichlet or Neumann 
problems. The computational time is almost reduced by half when compared to 
the conventional BEM [7]. 
 

 
Figure 3: Comparison of numerical and experimental profiles (Fr=90, 

We=43) obtained by MM-BEM and Liow [11]. Bottom image 
reproduced with permission from Cambridge University Press. 
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     The method is adapted for free surface flows and specifically to the chosen 
application of a drop impinging on a liquid surface. The number of nodes on the 
interface varies from 20 to 150 and the multipole series expansion is truncated 
after 21 terms. The comparison of the free surface profiles obtained by 
simulation through MM-BEM and experiments [11] at different instants are 
shown in Figure 3 (Fr=90, We=43). The qualitative agreement is correct. 
     Furthermore, a 10% of total CPU time saving is obtained when using MM-
BEM instead of the conventional BEM. Simulated profiles are identical in both 
methods. 

6 Conclusion 

A multipole based BEM has been implemented in an axisymmetric environment 
for the simulation of moving boundary problem of drop impact onto a liquid 
surface. By multipole techniques the interaction between individual nodes and 
ring sources in far field has been replaced by the interaction between node and 
group of ring sources. It has been shown that results obtained through MM-BEM 
matches well with available experimental data. 
     Although the time reduction is not significant yet, there is a wide scope of 
improvement in MM-BEM. The tuning of the parameters, for example, the 
number of terms in multipole series expansion, efficient choice of multipole 
centre in order to increase the validity of the far field and optimizing the 
admissibility criterion can further lead to more CPU time saving. To the best of 
our knowledge, this is the first attempt to accelerate the axisymmetric moving 
boundary value problem using a multipole expansion based technique. 
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