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Abstract 

The contribution deals with numerical simulation of micropolar fluid flow in 
channel, describing flow of suspensions with rigid and underformable particles 
with own rotation. The micropolar fluid flow theory is incorporated into the 
framework of a velocity-vorticity formulation of Navier-Stokes equations. The 
governing equations are derived in differential and integral form, resulting from 
the application of a Boundary Element Method (BEM). In integral 
transformations, the diffusion-convection fundamental solution for flow kinetics, 
including vorticity transport, heat transport and microrotation transport, is 
implemented. The Poiseuille flow test case is the benchmark case of channel 
flow. The results show, that the ratio between vortex viscosity coefficient and 
spin gradient viscosity coefficient controls the microrotation in the micro 
channel. 
Keywords:  boundary element method, micropolar fluid, poiseuille flow. 

1 Introduction 

In the recent years there was a progress in a micromachining technology. 
Opinion of a few scientists is that flows on the microscale differ from that on a 
macroscale, described by the Navier-Stokes equations. To clarify such 
assumption micropolar fluid theory is gaining interest of a lot of researchers. 
Micropolar fluids are a subclass of microfluids, introduced by Eringen [1]. A 
simple microfluid is by Eringen’s definition a fluid medium whose properties 
and behaviour are influenced by the local motions of the material particles 
contained in each of its volume elements. A microfluid is isotropic viscous fluid 
and possesses local inertia. Because of a complex formulation for a general 
microfluid this class of fluids is divided into subclasses, which allow a simplified 
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description of the effects arising from particle micromotions. As mentioned, in 
micropolar fluids, a subclass of microfluids, rigid particles contained in a small 
volume element can rotate about the center of the volume element, which is 
described by the micro-rotation vector (Eringen [1,2]). This local rotation of the 
particles is independent of the mean fluid flow and its local vorticity field. 
Lukaszewicz [3] presented in his book mathematical aspects of the micropolar 
fluid flow theory. From this theory it is also expected to successfully describe 
non-Newtonian behaviour of certain fluids, such as liquid crystals, ferro liquids, 
colloidal fluids, liquids with polymer additives, animal blood carrying 
deformable particles (platelets), clouds with smoke, suspensions, slurries and 
liquid crystals. This theory gain attention of researchers in recent years also in 
other fields of fluid flows. 
     Papautsky et al [4] described microchannel fluid flow behaviour with 
numerical model based on micropolar fluid theory and experimentally verified 
the model. Results showed that micropolar fluid theory present better agreement 
with experiment than the use of classical Navier-Stokes theory. In the paper of 
Pietal [5] it is evident that applicability of the micropolar fluid theory in 
microchannels depends on the geometrical dimension of the flow field. 
     Among different approximation methods for solving problems of fluid flow 
the Boundary Element Method (BEM) is a relatively new method with some 
interesting features, described in Škerget et al [6,7], Hriberšek and Škerget [8]. 
Here, we will focus on the development of BEM for velocity-vorticity 
formulation of Navier-Stokes equations presented by Škerget et al [6] and show 
how to incorporate the micropolar fluid theory into the BEM framework. 
 

2 Mathematical formulation 

For description of compressible viscous fluid flow we use conservation laws for 
mass, momentum and energy with appropriate rheological models and equations 
of state. In the case of isothermal fluids which behaviour can be described by 
micropolar fluid flow theory Eringen [1] presented modified equation of 
conservation laws for mass (1), momentum (2) and microrotation (3): 
ݐ߲ߩ߲   ԦሻݒߩሬԦሺߘ ൌ 0 (1) 

ߩ   ݐܦԦݒܦ ൌ െߘሬԦ  ሺߣ௩  ௩ߤ2  ݇௩ሻߘሬԦߘሬԦ · Ԧݒ െ                       െሺߤ௩  ݇௩ሻߘሬԦ ൈ ሬԦߘ ൈ Ԧݒ  ݇௩ߘሬԦ ൈ ሬܰሬԦ  ߩ Ԧ݂ (2) 

݆ߩ   ܦ ሬܰሬԦݐܦ ൌ ሺߙ௩  ௩ߚ  ሬԦߘሬԦߘ௩ሻߛ · ሬܰሬԦ െ ௩ߛ ሬሬሬԦ ൈ ሬሬԦ ൈ ሬܰሬԦ  ݇௩ሬሬԦ ൈ Ԧݒ െ 2݇௩ ሬܰሬԦ   Ԧ݈ (3)ߩ

 
     Differential operator ܦሺ·ሻ/ݐܦ ൌ ߲ሺ·ሻ/߲ݐ    represents the Stokesݔ߲/߲ሺ·ሻݒ
material derivative. In the next step we assume that fluid mass density ߩ and all 
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micropolar fluid properties as second order viscosity coefficient ߣ௩, dynamic 
viscosity ߤ௩, vortex viscosity coefficient ݇௩, viscosity gradient 
coefficients ߙ௩, ,௩ߚ  ௩ and microinertia ݆, are constant parameters. We alsoߛ
consider zero couples Ԧ݂ and Ԧ݈. Therefore we can rewrite equations (1) - (3) for 
the assumption that micropolar fluid flow will be viscous, incompressible, steady 
state and laminar also using vector algebra ൫ ሬሬሬԦ ൈ ሬሬԦ ൈ Ԧܨ ൌ ሬԦߘሬԦ൫ߘ · Ԧ൯ܨ െ  .Ԧ൯ܨ∆
Considering the mass conservation and accounting for the solenoidality of 
microrotation field the mass, momentum and microrotation conservation 
equations are further simplified to: 
ሬԦߘ  · Ԧݒ ൌ 0 (4) 
ߩ   ݐܦԦݒܦ ൌ െߘሬԦ  ሺߤ௩  ݇௩ሻ∆ݒԦ  ݇௩ߘሬԦ ൈ ሬܰሬԦ (5) 

݆ߩ   ܦ ሬܰሬԦݐܦ ൌ ∆௩ߛ ሬܰሬԦ  ݇௩ሬሬԦ ൈ Ԧݒ െ 2݇௩ ሬܰሬԦ (6) 

 
     To incorporate micropolar fluid flow theory into the framework of velocity-
vorticity formulation of Navier-Stokes equations and to apply the BEM 
approximation method, we must first split the dynamics of the flow into its 
kinematic and kinetic part. This is done by the use of derived vector vorticity 
field function ሬ߱ሬԦ, obtained as a curl of the compatibility velocity field  ሬ߱ሬԦ ൌ ሬሬԦ ൈݒԦ, which is solenoidal vector function by the definition ሬሬԦ ·  ൫ሬሬԦ ൈ Ԧ൯ݒ ൌ 0. By 
applying the curl operator to vorticity and using the mass conservation 
equation (5) for the incompressible fluid flow we get elliptic Poisson equation 
for the velocity vector, Skerget et al [6]: 
Ԧݒ∆   ሬԦߘ ൈ ሬ߱ሬԦ ൌ 0 (7) 

or in tensor notation form: 
 ߲ଶݒ߲ݔ߲ݔ  ݁ ߲߲߱ݔ ൌ 0 (8) 

     Equation (8) represents kinematic part of the fluid flow where for known 
vorticity field, the corresponding velocity field can be determined. 
     To compute the kinetic part of the flow we apply the curl operator to the 
momentum conservation equation (5) and considering that ሬሬԦ · ሬ߱ሬԦ ൌ ሬሬԦ ,0 · Ԧݒ ൌ 0 
and ሬሬԦ · ሬܰሬԦ ൌ 0 due to the vorticity and microrotation definition and mass 
conservation equation, it follows: ߩ ܦ ሬ߱ሬԦݐܦ ൌ ሺߤ௩  ݇௩ሻ∆ ሬ߱ሬԦ  ൫ ሬ߱ሬԦ · ԦݒሬԦ൯ߘ െ ݇௩∆ ሬܰሬԦ (9) 
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     This equation shows that the rate of change of the vorticity field is due to 
viscous diffusion, vortex stretching and twisting, and microrotation. 
For the case of two-dimensional plane flow and accounting for all previous 
assumption the final form of equations for kinematic and kinetic part is 
expressed in Cartesian tensor notation form as: 
 ߲ଶݒ߲ݔ߲ݔ  ݁ ݔ߲߲߱ ൌ 0 (10) 

ߩ   ݐܦ߱ܦ ൌ ሺߤ௩  ݇௩ሻ ߲ଶ߲߱ݔ߲ݔ െ ݇௩ ߲ଶ߲ܰݔ߲ݔ (11) 

݆ߩ   ݐܦܰܦ ൌ ௩ߛ ߲ଶ߲ܰݔ߲ݔ  ݇௩݁ ݔ߲ݒ߲ െ 2݇௩ܰ (12) 

 
     If we assume that ݇௩ ൌ 0 the equation for vorticity (11) and microrotation 
(12) are uncoupled, therefore the flow is independent of the microrotation, and 
the governing equations now resume the form of the classical Navier-Stokes 
equations. 
     When we use the velocity-vorticity formulation the pressure term is 
eliminated from momentum conservation equation (5). In order to compute 
pressure distribution we derive the equation for pressure, which is obtained from 
equation (5) with considering mass conservation equation (7): 
ሬԦߘ  ൌ െߩ ݐܦԦݒܦ െ ሺߤ௩  ݇௩ሻߘሬԦ ൈ ሬ߱ሬԦ  ݇௩ߘሬԦ ൈ ሬܰሬԦ ൌ Ԧ݂ (13) 

     To derive the pressure equation, depending on known velocity, vorticity and 
microrotation field, the divergence of equation (13) should be calculated, 
resulting in elliptic Poisson pressure equation: 
∆  െ ሬԦߘ · Ԧ݂ ൌ 0 (14) 

     The advantage of the Boundary Domain Integral Method, originating from 
Boundary Element Method, lies in the application of Green’s fundamental 
solutions as particular weighting functions. Different conservation models can be 
written with an appropriate selection of a linear differential operator ܮሾݑሿ in the 
following general form: 
ሿݑሾܮ   ܾ ൌ 0 (15) 

where the operator ܮሾݑሿ can be either elliptic or parabolic, ݑ൫ݎ,  ൯ is an arbitraryݐ
field function, and the nonhomogenous term ܾ൫ݎ,  ൯ is applied for non-linearݐ
transport effects or pseudo body forces. 
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     The integral representation of flow kinematics (10) is derived from the elliptic 
Poisson partial differential equation, Škerget et al. [6], resulting in: 
 ܿሺߦሻݒሺߦሻ  න ݒ ߲݊כݑ߲ dΓ ൌ ݁ න ݒ ௧߲݊כݑ߲ dΓ െ ݁ න ߱ ݔ߲כݑ߲ dΩΩ  (16) 

where כݑis elliptic fundamental solution. 
     To apply integral representation based on diffusion-convection fundamental 
solution for flow vorticity (11) and microrotation (12), nonhomogenous velocity 
field ݒԦሺݎሻ must be decomposed into the constant ݒԦ and a variable or perturbated 
part ݒԦ෨ሺݎሻ. A general form of the diffusion-convective equation with first order 
chemical reaction term is therefore: 
ݐݑ߲߲   ݔ߲ݒݑ߲ ൌ ܽ ߲ଶݔ߲ݑ߲ݔ െ ݑߢ െ ݔ߲ݑఫݒ߲   ܿ (17)ܫ

     Where ܽ and ܿare constant transport material properties, β is the reaction 
rate constant, while ܫ stands for known source term. For accumulation term ߲ݐ߲/ݑ the first order Euler scheme discretisation is used ߲ݐ߲/ݑ ൎ ሺݑி െݑிିଵሻ/∆ݐ, where the subscript ܨ is indicating variable ݑ in current time step and 
subscript ܨ െ 1 in previous time step and ∆ݐ is the time step. 
With use of equation (15) the equation (17) can be stated as: 
ሿݑሾܮ   ܾ ൌ ܽ ߲ଶݔ߲ݑ߲ݔ െ ݑߢ െ ݒ ݔ߲ݑ߲  ܾ (18) 

where ܮሾ·ሿ is linear differential operator, and ܾ stands for pseudo body force 
term. The parameter ߢ is defined as a sum of time increment parameter from 
accumulation term discretisation and ߯ which accounts other reaction terms: 
ߢ  ൌ 1Δݐ  ߯ (19) 

     If we suppose that we know the fundamental solution כݑሺߦ,  ሻ satisfying theݏ
equation כܮሾכݑሿ  ,ߦሺߜ ሻݏ ൌ 0, where כܮሾ·ሿ denotes the adjoint operator to ܮሾ·ሿ 
we can write: 
 ܽ ߲ଶכݑሺߦ, ሻݏሺݔሻ߲ݏሺݔሻ߲ݏ െ ,ߦሺכݑߢ ሻݏ െ ݒ ,ߦሺכݑ߲ ሻݏሺݔሻ߲ݏ  ,ߦሺߜ ሻݏ ൌ 0 (20) 

     The fundamental solution u* and its normal derivative is expressed as 
(Skerget et al [6]): 
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כݑ ൌ ܽ ܽߨ12 ݔሻ݁ݎߞሺܭ ൬ݒݎ2ܽ ൰ (21) 

ݔ߲כݑ߲ ݊ ൌ ݊2ݎߨଶܽ ቈܭݎߞଵሺݎߞሻݎ െ ଶ2ܽݎ ݒሻݎߞሺܭ ݔ݁ ൬ݒݎ2ܽ ൰ (22) 

where the parameter ߞ is defined as: 
ଶߞ  ൌ ൬ 2ܽ൰ଶݒ  ߢܽ ൌ ൬ 2ܽ൰ଶݒ  1ܽΔݐ  ߯ܽ (23) 

Ko and K1 are the modified Bessel functions of the second kind, ݎሺߦ,  ሻ is theݏ
vector from the source point ߦ to the reference point ݏ, while ݎ is its magnitude ݎ ൌ หݎห and ݒଶ ൌ  .ݒݒ
     By applying Green’s theorem for scalar field function to equation (18) and 
applying the Gauss theorem to the domain integral of pseudo body source term ܾ 
which includes the convection for the perturbated velocity field only, source 
term and initial conditions from accumulation term discretisation, we can write: ܿሺߦሻݑሺߦሻ  ܽ න ݑ ߲݊כݑ߲ dΓ

ൌ ܽ න ߲݊ݑ߲ dΓכݑ െ න dΓכݑݒݑ  න ݑఫݒ ݔ߲כݑ߲ dΩΩ
 1ܿ න dΩΩכݑܫ  ݐ∆1 න dΩΩכݑிିଵݑ  

(24) 

     Equation (24) represents integral equation for kinetic of the property ݑ. The 
meanings of ܽ, ܿ and ܫ for each ݑ are listed in table 1. 
 

Table 1:  Generalised representation of kinetic equations in integral form. 

 
Equation ݑ ܽ ߯ ܿ ܫ 

(11) ߱ 
௩ߤ  ݇௩ߩ  0 

 ௩ߩ݇
߲ଶ߲ܰݔ߲ݔ 

(12) ܰ 
݆ߩ2݇௩ ݆ߩ௩ߛ  

 ߱ ௩݆݇ߩ

 

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

38  Boundary Elements and Other Mesh Reduction Methods XXX



3 Results 

For the test case the Poiseuille flow in the channel was chosen (Fig. 1). The mesh 
has 50 elements in the x axis and 40 elements in y axis. The mesh was refined in 
the vicinity of solid walls with refinement factor 4. On the inlet the uniform 
velocity was prescribed (vx=0=1m/s) normal to the inlet boundary.  
 
 

 
 

Figure 1: Geometry and mesh of the problem. 

     A general type of the boundary condition for the microrotation on the no slip 
walls for the 2D planar problem was proposed by Rees and Bassom [9]: 
 ܰ௪ ൌ െ݊ ݕ௫߲ݒ߲ 0  ݊  1  (25) 

where ݊ ൌ 1/2 indicates weakly concentrated suspensions (Jenna and Mathur 
[10]), ݊ ൌ 1 indicates turbulent shear flows (Peddieson [11]) and ݊ ൌ 0 is called 
strong concentrated suspensions (Guram and Smith [12]). Our calculation was 
performed for the ݊ ൌ 0 and therefore microrotation was equal zero at the rigid 
boundaries. The initial velocity and microrotation fields were set to zero. 
Microinertia was defined as a square of the length scale ሺ݆ ൌ  ଶሻ, as stated by theܮ
Rees and Bassom [9]. Viscosity gradient coefficient ߛ௩ or the spin gradient 
viscosity was taken in the form proposed by the Ahmadi [13] as: 
௩ߛ  ൌ ൬ߤ  ݇௩2 ൰ ݆ (26) 

     The calculation was performed for different material parameters K=0, 0.1, 
0.5, 10 and 100, representing the ratio between vortex viscosity and dynamic 
viscosity. The case K=0 was achieved by setting vortex viscosity to be zero. This 
case is presenting calculation of the micropolar fluid in which the microrotation 
does not affect the flow (as in the case of classical Navier-Stokes equation). On 
fig. 2 the microrotation profiles at the outlet are presented. An additional 
coefficient λ, which is a combination of vortex viscosity  ݇௩ and spin gradient 
viscosity coefficient  ߛ௩, is controlling the microrotation. When the parameter  ݇௩ 
is zero also the coefficient λ is zero. We can see that in the case  ݇௩ ൌ 0 also the 
coefficient λ is zero and the microrotation is zero and that increasing of 
coefficient λ is causing increase of microrotation. Results in fig 2 are consist with 
results of Eringen [1]. The pressure difference in dependence of the material 
parameter is shown in fig. 3. 
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Figure 2: Microrotation profiles. 

 

 

Figure 3: Pressure difference. 
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4 Concluding remarks 

The paper presented the derivation of differential as well as integral forms of 
equations in the framework of velocity-vorticity formulation for numerical 
simulation of fluid flow with micropolar fluid theory. The derivation showed that 
the derived equations include several additional terms, compared with the 
classical set of Navier-Stokes equations. The physical model was incorporated 
into the BEM numerical code. The derived numerical algorithm was used to 
analyze the effect of different parameters of micropolar fluid flow on flow in a 
channel. Computational results were also compared with results of other authors 
and comparison shows good agreement. 
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