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Abstract 

In an earlier study, a meshless method was developed to obtain stable and 
convergent results for the flow of the entire area of a water reservoir. Shortage or 
lack of dissolved oxygen (DO) sometimes results in pollution of the water in a 
reservoir. An attempt was made to ameliorate the concentration of oxygen in the 
lower layer of the reservoir by using a machine that supplies DO. A meshless 
method was applied to calculate the concentration distribution of DO and the 
flow caused by the DO-supplying machine. For the area surrounding the DO-
supplying machine, the results calculated by the meshless method appeared to be 
slightly unreasonable compared with the observed velocity vectors obtained in 
the model simulation of a water reservoir constructed in our laboratory. The 
boundary element method did not succeed in obtaining convergent solutions to 
this problem. In this study, a new meshless method is devised, and our boundary 
element method is improved so that analytical solutions that are comparable with 
the observed results can be obtained.   Regarding the concentration distribution 
of DO and the velocity vectors of the flow calculated by the two numerical 
methods (the WFDM and the FEM) and those observed in our model simulation 
described above, the effect and accuracy of the alternative meshless and 
boundary element methods were estimated. 
Keywords: meshless method, boundary element method (BEM), flow and 
concentration in water reservoirs, weighted finite difference method (WFDM), 
finite element method (FEM) and observed velocity in model simulation of water 
reservoir. 
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1 Introduction  

By using a machine that supplies DO (dissolved oxygen), we attempted to 
ameliorate the concentration of oxygen in the lower layer of water areas, such as 
a water reservoir or the sea (Kanoh et al. [1]), and succeeded in several cases. 
Our DO-supplying machine dissolved the high concentration of oxygen (about 
100 mg per litre: [mg/L]) in the water of the tank of the machine at a depth of 
about 50 metres. The water that became rich in DO flowed out to the lower layer 
of the water area in a horizontal direction. The observed velocity of the water 
flow was considerably small (almost 0.1 m/sec [metre per second]); however, the 
distance reached by the DO-rich water was observed to be more than 300 metres 
in the B reservoir. No theoretical explanation or evidence has been found to 
explain these phenomena. In order to obtain the evidence to explain the 
phenomena, we constructed a new simulation model in the sanitary and 
environmental engineering laboratory of Kyushu Sangyo University and 
obtained some observed velocity vectors and the distributions of the DO 
concentration in the model. Our meshless and boundary element methods were 
applied to numerically simulate the phenomena and compared with the observed 
data obtained in our model simulation. 

2 Governing equations  

Three equations, i.e., continuous, Navier-Stokes (N-S), and convective-diffusion 
equations, govern the flow and diffusion in a water reservoir. In the vertical (x1, 
x2) plane, as illustrated in Figure 1, these equations are shown as follows: 

u1, 1 + u2, 2 = 0          (1) 
ρν /,P),,u,,u(,uu,uuu 121112121111 −=+−⋅+⋅+   (21) 

g/,P),,u,,u(,uu,uuu 222122221212 +−=+−⋅+⋅+ ρν        (22) 

0,,CD,,CD,Cu,CuC 22112211 =⋅−⋅−⋅+⋅+        (3) 
BCA +⋅=ρ                    (4) 

where u1 and u2 describe the velocities of the x1 and x2 directions, respectively, P is 
the pressure, g is the gravity acceleration, ν is the kinematic viscosity, C is the 
concentration of dissolved oxygen (DO), and D1 and D2 are the diffusion coefficients 
of the x1 and x2 directions, respectively. Here, the density ρ is connected to the DO 
concentration C, as written in Equation (4), with the coefficients A and B. The DO 
concentration C is compatible with the water temperature T in case it is necessary to 
calculate the water temperature T or other values. 

3 Application of the meshless method 

3.1 Meshless method for flow analysis 

We tried to apply the meshless method to a flow analysis in the steady state in 
the area surrounding a DO-supplying machine in a water reservoir, as shown in 
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Figures 1(a) and (b). The meshless method is based on the idea of the mesh-free 
RBF collocation method (Kanoh et al. [1]). The penalty method was used so that 
the pressure terms would be eliminated in the N-S equations and the difficulty of 
the pressure boundary conditions would be avoided in the meshless method. 

 
(a) 

 
 
 
 
 
 
 
 

(b) 

Figure 1: (a) Concept of a DO-supplying machine in a water reservoir. 
(b) Analytical domain around a DO-supplying machine. 

3.2 Meshless method formulation for flow analysis 

3.2.1 Application of the penalty method to N-S equations 
Introducing the penalty method to the N-S equations in the steady state, the 
following equation is obtained, as described below, 

0)uu()uu(uu j,2,22,1j,ij,2,22,1j,ij =+−⋅+−⋅ νδλ  i, j = 1, 2        (5) 

where λ means Re・ K/ρ,  Re is the Reynolds number, and K describes the 
coefficient of the penalty method (Kanoh et al. [1, 2]). 

3.2.2  Simultaneous equations for the meshless method of flow analysis  
Substituting u1 and u2 at time (t-∆t) into the above Equation (5), the following 
expression is obtained: 

0)u2uu()uu(uuuu 11,112,222,121,211,12,121,11 =++−+−⋅+⋅ νλ    (61) 

0)u2uu()uu(uuuu 22,221,111,222,212,12,221,21 =++−+−⋅+⋅ νλ    (62) 

x1 , u1  

x2 , 
u2 

 
Flow out  
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     The unknown values u1 and u2 are expressed as Equation (7) using the global 
expansion function Xj (= (r2+c2)−1/2) of the mesh-free RBF collocation method,  

u1 = αj Xj = αj /(r2+c2)1/2            (71) 
u2 = βj Xj = βj /(r2+c2)1/2            (72) 

where r equals {(x-xj)2+(y-yj)2}1/2 and c is the constant. 
     Solving the simultaneous equations that are described as Equation (8), the 
above unknowns (αj and βj) can be obtained.  
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    (82). 

     Substituting the obtained values of αj and βj into Equation (7), the values of u1 
and u2 in the steady state can be calculated using the meshless method. 

3.3 Meshless method formulation for concentration analysis 

Here, we deal with the concentration analysis in the unsteady state in the area 
surrounding the DO-supplying machine. First of all, the concentration in the 
steady state is expressed as Equation (9) with Equation (10) (Kanoh et al. [1]).  

C = γj Xj = βj /(r2+c2)1/2                    (9) 
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               (10). 

     Secondly, the transient convective-diffusion equation is rewritten as follows:  
0)C(LC =+                                               (11), 

where C  is the time derivative of C and L(C) has the terms of convection and 
diffusion in the steady state. Thirdly, applying the finite difference scheme, 
Equation (11) yields 

02/)}C(L)C(L{t/)CC( tttttt =++∆− ∆+∆+     (12), 

2/t)C(LC2/t)C(LC tttttt ∆∆∆∆ ⋅−=⋅+ ++                       (13), 
where Ct+∆t and Ct are the concentrations at time (t+∆t) and time (t), respectively, 
and Lt+∆t (C) and Lt (C) are the terms of convection and diffusion at time (t+∆t) 
and time (t), respectively. Finally, using equations (9), (10), and (13), the 
meshless method can analyse the DO concentration in the unsteady state. 

3.4 Boundary conditions and boundary discretisation 

The boundary conditions for the flow and concentration analyses have been 
previously proposed for the meshless method, the BEM, the FEM, and the 
WFDM (Kanoh et al. [1–3]). Regarding the boundary discretisation for the 
flow analysis by our boundary element method, the outline is as follows: 
(1) the convergence and accuracy of the very delicate flow were sensitive to 
the domain and boundary discretisation. It is necessary to determine the 
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appropriate lengths of the domain and boundary discretisation to obtain 
convergence and accuracy in the computational analysis; (2) in an earlier 
study, in which several kinds of lengths of the boundary elements were used 
for flow analysis around the DO-supplying machine, the boundary element 
method could not obtain the convergence in the analysis; (3) in this paper, two 
sub-regions and same-length elements are used, and inner cells are also 
introduced to calculate the volume integration. The new boundary element 
method, in which two kinds of lengths of boundary elements are employed 
(160 elements, 800 inner cells; and 800 elements, 1,890 inner cells), can obtain 
both the convergence and the comparable computational time with the 
meshless method or the FEM. 

4 Results and discussion 

As described above, we constructed a new simulation model in our laboratory 
and obtained some observed velocity vectors and the distributions of the DO 
concentration in the model. In reference to the observed results, we tried to 
obtain some evidence to explain the phenomena that the distance reached by the 
DO-rich water was more than 300 metres in a reservoir in spite of the small 
velocity of the water flowing out. The numerical results of the meshless method, 
the boundary element method (BEM), the finite element method (FEM), and the 
weighted finite difference method (WFDM) are also discussed in this section in 
order to obtain some evidence to explain the phenomena. The two kinds of 
analyses conducted using these methods are described here. Namely, the first 
analysis is that of the flow, and the second is that of the DO concentration 
around a DO-supplying machine in a water reservoir.   

4.1 Observed values in a model around a DO-supplying machine 

4.1.1 Flow velocity in a model 
Figure 2 is an illustration of the velocity vectors caused by a DO-supplying 
machine in a reservoir model visualised using aluminium flakes, a strobe light, 
and a digital VTR. In the area neighbouring the outflow point, the velocity 
vectors in the horizontal direction were distinguished, and the values of the 
velocities were larger than those in other areas. In other areas, which were 
toward the centre or more than 0.8 metres from the outflow point, the velocity 
values became less than 1cm/sec. 

4.1.2 Concentration distribution of DO in a model 
Figure 3 is an illustration of the concentration distribution caused by a DO-
supplying machine in a reservoir model visualised using a pigment (methylene 
blue) and a VTR. The speed of diffusion of the DO-rich water (DO: 30mg/L) 
was obviously quicker than that in DO-poor water (DO: 10mg/L; the figure was 
omitted in this paper), and the observed direction of the diffusion was mainly 
horizontal. 
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Figure 2: Observed velocity vector distribution (DO: 30mg/L). 
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Figure 3: Observed areas of diffusion of pigment (DO: 30mg/L). 

4.2 Flow analysis around a DO-supplying machine in a water reservoir 

4.2.1 Meshless method calculation of the flow around the machine 
Figure 4 is an illustration of the velocity vectors around a DO-supplying machine 
calculated by the meshless method, in which the number of the points in the 
meshless method is 1,891 and the three values of λ, C, and ν are 1,000.0, 1.0, 
and 0.001, respectively. The stability and convergence of the flow analysis 
around the machine to supply DO using the meshless method seemed 
satisfactory. 
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Figure 4: Velocity vectors using meshless method (Number of the 
points:1891). 

4.2.2 BEM, FEM, and WFDM calculation of the flow around the machine 
Figure 5 is an illustration of the velocity vectors around a DO-supplying machine 
calculated by the BEM, in which the number of elements in the BEM is 240 and 
the two values of λ and ν are 1,000.0 and 0.001, respectively. The penalty 
 

 
Figure 5: Velocity vectors using the BEM around a DO-supplying machine. 

method was introduced, as well as in the meshless method. The stability and 
convergence of the flow analysis using the BEM seemed satisfactory. The 
stability and convergence of the flow analysis using both the FEM and the 
WFDM also seemed satisfactory (the figures to illustrate those velocity vectors 
have been omitted). These three methods could yield similar solutions to the true 
results of several flow problems that were observed in simulation models 
constructed in our laboratory. 
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4.2.3 Time required by the three numerical methods for the flow analysis 
Table 1 shows the time required by the three numerical methods for analysing 
the flow around a DO-supplying machine. When the number of the divisions of 
the analytical domain was 800, the BEM and the meshless method needed almost 
7 and 21 times the time required for the FEM, respectively. When the number of 
the divisions of the analytical domain became 1,800, the BEM and the meshless 
method needed almost 6 and 82 times the time required for the FEM, 
respectively. In both cases, for the purposes of saving time, the FEM was the 
best; the BEM was second best; and the meshless method was the poorest 
performer. On the other hand, for the purpose of saving the time and labour 
required for preparing the input data, the meshless method was the best, FEM 
was second best, and BEM was the worst. 

Table 1:  The time required by the three methods for analysing the flow 
around a DO-supplying machine.  

 
 
 
 
 
 
 

4.3 Concentration analysis around a DO-supplying machine 

4.3.1 Meshless method calculation of the concentration distribution 
Figure 6 is an illustration of the concentration distribution calculated using the 
meshless method, in which the number of the points in the meshless method is 
1,891 and the three values of λ, C, and ν are 1000.0, 2.2, and 0.001, respectively.  
 

 
t = 4 sec                                         t = 100sec               t = 200sec 

Figure 6: DO-concentration distribution using the meshless method (the 
contours were drawn when C was larger than 12mg/L). 

We consider that the stability and convergence of the meshless method for this 
problem are satisfactory. 

Relative computational time

Numerical method 

BEM 
Meshless method 

Number of divisions

800 

6.67 
5.00 

413 

FEM 1.00 

20.7 

1,600 

28.3 
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4.3.2 WFDM calculation of the concentration distribution 
Figure 7 is an illustration of the concentration distribution calculated using the 
weighted finite difference method, in which the number of meshes in the WFDM 
is 12,960 and the value of  ν is 0.001. We consider that the convergence and 
accuracy of the WFDM for this problem are satisfactory enough. In Figure 3, the 
observed concentration distribution (DO: 30mg/L) was illustrated in the former 
section. Comparing the observed values with the calculated results using the 
WFDM, it was evident that the WFDM could yield a similar solution to the 
actual results of the problem. The time required by the WFDM for analysing the 
concentration was less than those by the FEM, the BEM, and the meshless 
method, since the scheme of the WFDM was explicit and did not require any 
simultaneous equations for analysing the problem. Investigating the numerical 
solutions of the meshless, the BEM, the FEM, and the WFDM and comparing 
those with the observed results obtained using a new model constructed in our 
laboratory, we could find an approach to obtain some evidence to explain the fact 
that the distance reached by the DO-rich water was more than 300 metres in the 
B reservoir in spite of the very low-velocity water flow. 
 

 
 t = 2sec         t = 100sec                     t = 200sec 

 
Figure 7: DO-concentration distribution using WFDM (the contours were 

drawn when C was larger than 12mg/L). 

5 Conclusion 

In summary, (1) the newly investigated boundary element method could give 
stability and convergence to the flow analysis around the DO-supplying 
machine; (2) the meshless method could be used to calculate two kinds of 
problems; the first is the flow caused by the DO-supplying machine, and the 
second is the DO-concentration distribution around the DO-supplying machine. 
The stability and convergence of the two kinds of analysis using the meshless 
method seemed satisfactory; (3) field studies in a few water reservoirs led to 
reports of a phenomenon in which the distance reached by the DO-rich water 
was more than 300 metres in spite of the very low velocity of the water flow; 
(4) investigating the numerical solutions of the meshless method, the BEM, the 
FEM, and the WFDM and comparing them with the observed results obtained 
using a new model constructed in our laboratory, we found an approach to obtain 
some evidence to explain the phenomena described above. 
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