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Abstract

Steady Stokes flow driven by gravity down an inclined plane wall around a circular
cylinder attached to the wall is considered. The effects of the cylinder are examined
for various flow configurations. Values for the unit normal and curvature of the
free surface are found using a Hermitian radial basis function interpolation. All
free surface profiles indicate an upstream peak, followed by a trough downstream
of the obstacle with the peak decaying in a “horseshoe” shaped deformation. Flow
profiles are governed by four parameters; the plane inclination, the Bond number,
the contact angle and the obstacle geometry.
Keywords: BEM, three-dimensional, thin film, Newtonian viscous flow, cylinder.

1 Introduction

Thin film flows down an inclined plane wall driven by gravity can often be mod-
elled as an incompressible Stokes flow. Flows usually involve interaction with an
obstacle either fully submerged of protruding through the film surface.

Early published works considering two-dimensional film flows over obstacles
utilized a variety of techniques for the numerical procedures required to obtain
solutions. An overview of these publications is presented in Blyth and Pozrikidis [1].

Hayes et al. [2] considered a three-dimensional steady, thin, viscous liquid film
down an inclined plane driven by gravity and over small topographies. The lubri-
cation approximation was used as the basis for their model and formulates a sin-
gle linear inhomogeneous evolution equation. The free surface shape was then
obtained by formation of the appropriate Green’s function.
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The use of a direct boundary integral equation (BIE) for a three-dimensional
Stokes flow analysis of film flow down an inclined plane and over an obstacle was
first implemented by Pozrikidis and Thoroddsen [3] and later refined by Blyth and
Pozrikidis [1]. The model in Pozrikidis and Thoroddsen [3] is based around the
asymptotic limit where the size of a spherical obstacle is much smaller than the
undisturbed film depth. Flows are shown to form an upstream peak and down-
stream trough with the peak decaying in the form of a “horseshoe”. The extension
of this work by Blyth and Pozrikidis [1] focuses on generalizing the earlier analy-
sis to more arbitrarily sized obstructions. However, both simulations implement a
linearization about the free surface deflection and thus the accuracy of significant
deformations caused by large obstacles is unknown.

Numerical simulation of flow around obstacles has not been extensively consid-
ered. To the authors knowledge, the only applicable published work is Sellier [4].
This studies flow around a cylinder using the lubrication approximation, with the
governing equations solved by the FEMLAB package. This approach is unable to
impose a no slip boundary condition on the obstacle and is more relevant to far
field displacements.

This paper uses the BIE formulation outlined by Blyth and Pozrikidis [1] to
implement a modified analysis for film flows around large obstacles. A Hermitian
radial basis function (RBF) is used for evaluation of the free surface terms required
and is implemented as a replacement for previous finite difference approximations
(FDAs) [1, 3]. Elimination of the restriction that the free surface deformation is
small [1, 3], allows accurate results for large obstacles.

2 Mathematical formulation

Figure 1 shows a two-dimensional schematic of a typical film flow of undisturbed
thickness H travelling down a plane inclined at angle α and around an obstacle
attached to the plane. The inclined plane is referred to as Sw , the obstacle-fluid
surface Sp the disturbed free surface Sf , and the outward unit normal is denoted

Figure 1: A cross section of a typical film profile.
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n. Finally the Cartesian co-ordinate system is aligned so that the x1x2-plane defines
the undisturbed surface, with x1 in the direction of the flow, and x3 perpendicular
to the undisturbed flow.

For convenience the physical variables are first non-dimensionalized. The undis-
turbed film height, H is used for the reference length, the undisturbed free stream

surface velocity, Us = H 2ρg sinα
2µ (given by the Nusselt solution) for the reference

velocity, and a viscous scaling µUs
H

used for the tractions. The associated Bond
number is given by,

Bo = ρgH2 sin α

γ
, (1)

where γ is the surface tension, ρ the fluid density and g the acceleration due to
gravity. The inverse Bond number B is defined by Blyth and Pozrikidis [1] using

the mass flux and is related to eqn (1) by B = sin1/3 α
Bo .

The flow problem is governed by the usual incompressible equations for con-
servation of mass eqn (2) and steady Stokes flow eqn (3),

∂ui

∂xi
= 0, (2)

− ∂p

∂xi
+ ∂G

∂xi
+ ∂2ui

∂x2
j

= 0, (3)

where G = −2(x3 cotα − x1). The far field boundary conditions involve the flow
velocity and pressure returning to undisturbed values far from the obstacle and the
free surface deflection decaying to zero, i.e,

ui → u∞
i

p → p∞

h → 0
∂h

∂x1
→ 0

∂h

∂x2
→ 0




as x → ±∞. (4)

Boundary conditions must include no slip (zero velocity) on the wall and obstacle
surface eqn (5), and a kinematic eqn (6) and dynamic eqn (7) condition applied on
the free surface. These requirements can be conveniently expressed as

ui = 0 x ∈ Sw ∪ Sp, (5)

∂xi

∂t
ni = ujnj x ∈ Sf , (6)

fi = σijnj = − 4

Bo
κni x ∈ Sf , (7)

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXX  15



where t is time, fi is the boundary traction, κ is the curvature of the surface and
σij is the stress tensor. Expressions for curvature and the stress tensor are

κ = 1

2

∂ni

∂xi
, (8)

σij = −pδij +
(
∂ui

∂xj
+ ∂uj

∂xi

)
. (9)

Finally, a contact angle θ between the free surface and the obstacle boundary must
be specified and dependent on the fluid / obstacle properties. This is incorporated
into the problem by

∂h

∂xi
ni = tan

(
π

2
− θ

)
, (10)

which is valid along the contact line.
In the absence of an obstacle, the governing equations are

∂u∞
i

∂xi
= 0, (11)

−∂p
∞

∂xi
+ ∂G

∂xi
+ ∂2u∞

i

∂x2
j

= 0, (12)

and u∞
i , p∞ corresponds to the far field asymptotic case. In addition the no-slip

boundary conditions for the asymptotic flow give u∞
i = 0 for x ∈ Sw , and solu-

tions can be readily shown as

p∞ = −2x3 cotα, (13a)

u∞
i = (1 − x2

3)δi1. (13b)

The asymptotic boundary traction is given by f∞
i = σij(p

∞, u∞
k )nj , and using

eqn (9) becomes

f∞
i = 2x3(cotαni − n3δi1 − n1δi3). (14)

Solutions eqn (13), eqn (14) govern the Stokes flow down an inclined plane in the
absence of obstacles and are used as the basis for determining conditions for a
disturbance flow due to the obstacle.

Disturbance velocities and pressures are denoted as uδi = ui − u∞
i and pδ =

p − p∞ respectively. Governing equations, obtained by comparing eqns (2)–(3)
with eqns (11)–(12) are

∂uδi

∂xi
= 0, (15)

−∂p
δ

∂xi
+ ∂2uδi

∂x2
j

= 0. (16)
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To satisfy the far-field condition eqn (4), uδi and pδ are subject to the conditions

uδi → 0

pδ → 0

}
as x → ±∞. (17)

Velocity conditions are found on the wall, Sw and obstacle, Sp and require

uδi = 0 x ∈ Sw, (18a)

uδi = −u∞
i x ∈ Sp. (18b)

In addition the associated disturbance boundary traction, f δi is defined on the free
surface Sf from eqn (7) as

f δi = − 4

Bo
κni − f∞

i , (19)

where f∞
i is given by eqn (14), and κ is the curvature associated with the disturbed

free surface.

2.1 Boundary integral formulation

The equations of Stokes flow for the disturbance quantities eqns (15)–(16) can be
expressed exactly as an integral representation eqn (20),

cij(x0)u
δ
i (x0) = 1

8π

∫
Sf∪Sp

G∗
ij(x, x0)f

δ
i (x)dS(x)

− 1

8π

∫
Sf∪Sp

uδi (x)T
∗
ijk(x, x0)nk(x)dS(x). (20)

To close the obstacle a virtual surface is introduced and labeled S̃f . For the closed
domain Sp ∪ S̃f , the Stokes flow associated with the far field quantities u∞

i and
p∞ −G is satisfied by the integral representation eqn (21)

cij(x0)u
∞
i (x0) = − 1

8π

∫
Sp∪S̃f

G∗
ij(x, x0)(f

∞
i (x)+ Gni (x))dS(x)

+ 1

8π

∫
Sp∪S̃f

u∞
i (x)T

∗
ijk(x, x0)nk(x)dS(x). (21)

The coefficient cij(x0) takes a value 0 when x0 is outside the domain, 1
2δij when

x0 is on the domain boundary and δij when x0 is within the domain. Functions
G∗

ij(x, x0), T ∗
ijk(x, x0) are the Lorentz-Blake Green’s function for velocity and stress

respectively satisfying zero velocity value at the inclined plane. Noting that f δi →
0 and uδi → 0 as x → ±∞, the edges of the flow domain are omitted from eqn (20)
as well.
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By a similar derivation to flow over an obstacle as described by Blyth and
Pozrikidis [1], two BIE are derived, one collocated over the free surface Sf and
one over the obstacle-fluid surface Sp. The BIE for x0 ∈ Sf is,

1

2
uδj (x0)+ 1

8π

∫
Sf

uδi (x)T
∗
ijk(x, x0)nk(x)dS(x)

= 1

8π

∫
Sp

G∗
ij(x, x0)f̃i (x)dS(x)

+ 1

8π

∫
Sf

G∗
ij(x, x0)f

δ
i (x)dS(x)

+ 1

8π

∫
S̃f

G∗
ij(x, x0)(f

∞
i (x)+Gni(x))dS(x)

− 1

8π

∫
S̃f

u∞
i (x)T

∗
ijk(x, x0)nk(x)dS(x) x0 ∈ Sf , (22)

where f̃i(x) = fi(x)+Gni . For x0 ∈ Sp the BIE is derived as

1

8π

∫
Sp

G∗
ij(x, x0)f̃i(x)dS(x) = −u∞

j (x0)− 1

8π

∫
Sf

G∗
ij(x, x0)f

δ
i (x)dS(x)

+ 1

8π

∫
Sf

uδi (x)T
∗
ijk(x, x0)nk(x)dS(x)

− 1

8π

∫
S̃f

G∗
ij(x, x0)(f

∞
i (x)+ Gni (x))dS(x)

+ 1

8π

∫
S̃f

u∞
i (x)T

∗
ijk(x, x0)nk(x)dS(x) x0 ∈ Sp.

(23)

In summary the steady, gravity driven Stokes flow down an inclined plane around
an obstacle is governed exactly by solutions satisfying the BIE’s given in eqn (22)
and eqn (23), the kinematic condition eqn (6) and the dynamic condition eqn (7),
along with the far field equations eqn (4). As the obstacle protrudes through the
free surface a contact line is present and the contact angle condition eqn (10) is
also required.

2.2 Finite free surface deflections and the radial basis functions

A modification to the linearized approach of Blyth and Pozrikidis [1] using a Her-
mitian RBF allows accurate calculations of the free surface curvature and spatial
derivatives. Further, the method also allows the incorporation of the free surface
far field conditions and the contact angle condition. At any point on the free sur-
face, the height is given by h(x1, x2), and takes values hi at data point i for a total
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ofN points. The surface can then be interpolated using a RBF ψ(‖x − ξξξj‖) where
j = 1, . . . , N and ξξξj are the x1, x2 co-ordinates of the data points hj . Thin plate
splines (TPS) was used for the radial basis function, and require the addition of a
polynomial term of order m − 1 to guarantee the invertibility of the interpolation
matrix, where m is specified within the thin plate spline.

The values of ∂h
∂x1

and ∂h
∂x2

can be constrained at a selected set of n data points,
whilst still defining h on the original N data points. A solution for h can be
obtained using the differential operators ∂

∂x1
and ∂

∂x2
but acting on the thin plate

splines second argument ξξξ , i.e. ∂
∂ξ1

and ∂
∂ξ2

. Similar constraint conditions are
imposed in the interpolation to satisfy the contact condition eqn (10).

To complete the computation for finite disturbances, the outward unit normal
and mean curvature of the free surface are both required. Evaluation of the unit
normal will require derivatives ∂h

∂x1
and ∂h

∂x2
, with the mean curvature needing in

addition, ∂
2h

∂x2
1

, ∂
2h

∂x2
2

, and ∂2h
∂x1∂x2

on the surface, which are obtained by the radial basis

interpolation.

3 Numerical examples

Figure 2 shows the obtained numerical result of the free surface mesh for flow
around a cylinder of radius a = 2.0. The flow was down a plane inclined at α =

Figure 2: The free surface mesh and contours showing flow around a large cylinder
of radius a = 2.0. The plane is inclined at α = 45◦, the contact angle is
set to θ = 90◦ and the inverse Bond number is 1.
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45◦ and the film has an inverse Bond number of B = 1. The contact angle at the
cylinder walls was constrained to θ = 90◦.

Variations of the inverse Bond number B was considered for flow down a plane
inclined at α = 45◦ around a cylindrical obstacle of radius a = 0.5. The free
surface - obstacle interface was modelled by a contact angle of θ = 90◦. Increasing
the inverse Bond number, corresponding to a raising of surface tension forces, was
shown to flatten the centre line profiles. Variations of plane inclination angles α
were also considered. Flow with an inverse Bond number B = 1 and around a
cylindrical obstacle of radius a = 0.5 was considered. The free surface - obstacle
interface was modelled by a contact angle of θ = 90◦. Increasing the inclination
angle resulted in a raising of the peak before the obstacle.

Figure 3 indicates the smoothed centre line solutions for flow around a range
of cylinder radii. Flow is for an inverse Bond number B = 1 and down a plane
inclined at α = 45◦. The obstacle was chosen neutrally wetting, (i.e. the con-
tact angle was θ = 90◦). Increasing the cylinder radius results in a raising of the
peak and deepening of the trough heights both before and behind the obstacle. Fig-
ure 4 illustrates the contact line profile around the cylinder wall for the range of
cylinder radii depicted in figure 3. Interestingly intersection of the contact line pro-
files occurs at an approximately fixed angular position along the cylinder, between
0.94–0.98 radians upstream of the position x1 = a.

Figure 5 indicates the smoothed centre line solutions for flow around a cylin-
der of radius 0.5. Flow is for an inverse Bond number B = 1 and down a plane

Figure 3: Centre line solutions for free surface deflections around a cylinder of
varying radius, with inverse Bond number B = 1 and down a plane
inclined at 45◦. The contact angle at the cylinder wall is θ = 90◦.
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Figure 4: Contact line solutions for free surface deflections around a cylinder of
varying radius, with inverse Bond number B = 1 and down a plane
inclined at 45◦. The contact angle at the cylinder wall is θ = 90◦.

Figure 5: Centre line solutions for various contact angles at the cylinder wall. The
free surface deflections are around a cylinder of radius a = 0.5 on an
inclined plane at 45◦ and the flow has an inverse Bond number B = 1.
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inclined at α = 45◦. The solutions show a range of wetting and non-wetting flow
configurations corresponding to a range of contact angles θ . Decreasing the con-
tact angle results in a raising of the peak and trough heights both before and behind
the obstacle.

4 Conclusions

Stokes flow down an inclined plane around a cylinder is considered and solutions
found by the Boundary Element Method (BEM). Use of a global Radial Basis
Function (RBF) is used to extend the small free surface deflection assumption by
Blyth and Pozrikidis [1] through accurate determination of free surface quantities
such as curvature and unit normal for larger surface deflections. For flow around
cylinders incorporation of a contact angle condition within the RBF was required,
and within a parameter study results for various size cylinders presented.
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