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Abstract

We investigate the reconstruction of a divergence-free surface current distribution
from knowledge of the magnetic flux density in a prescribed region of interest
in the framework of static electromagnetism. This inverse problem is motivated
by the design of gradient coils used in magnetic resonance imaging (MRI) and
is formulated using its corresponding integral representation according to poten-
tial theory. A novel higher-order boundary element method (BEM) which satis-
fies the continuity equation for the current density, i.e. divergence-free BEM, is
also presented. Since the discretised BEM system is ill-posed and hence the asso-
ciated least-squares solution may be inaccurate and/or physically meaningless,
the Tikhonov regularization method is employed in order to retrieve accurate and
physically correct solutions.
Keywords: inverse problem, regularization, divergence-free BEM, magnetic reso-
nance imaging (MRI).

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive technique for imaging the
human body, which has revolutionised the field of diagnostic medicine. MRI relies
on the generation of highly controlled magnetic fields that are essential to the pro-
cess of image production. In particular, an extremely homogeneous, strong, static
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field is required to polarize the sample and provide a uniform frequency of preces-
sion, while pure field gradients are needed to encode the spatial origin of signals.
The field gradients are generated by carefully arranged wire distributions generally
placed on cylindrical surfaces surrounding the imaging subject, known as gradient
coils [1–3].

2 Mathematical formulation

In a non-magnetic material, as is the case of biological tissue, the magnetic flux
density B = (Bx, By, Bz)T satisfies the following system of partial differential
equations [4]:

∇× B(x) = µ0J(x), ∇ ·B(x) = 0, x = (x, y, z)T ∈ R
3. (1)

Here µ0 = 4π × 10−7 N/A2 is the permeability of the free-space and J =
(Jx, Jy, Jz)T is the current density which is defined as a surface current density
Jcoil = (Jcoil

x , Jcoil
y , Jcoil

z )T, i.e.

J(x) = Jcoil(x′) δ(x′,x), x ∈ R
3, x′ ∈ Γcoil, (2)

where Γcoil ⊂ R
3 is the coil surface and δ(x′,x) is the Kronecker delta function,

such that

∇ · Jcoil(x) = 0, Jcoil(x) · ν(x) = 0, x ∈ Γcoil, (3)

with ν the outward unit vector normal to the coil surface Γcoil.
If the vector potential A = (Ax, Ay, Az)T is introduced as:

B(x) = ∇× A(x), x ∈ R
3, (4)

then the system of partial differential equations (1) reduces to the following Pois-
son equation for the vector potential A:

∇2A(x) = µ0J(x), x ∈ R
3. (5)

In the direct problem formulation, the current density Jcoil is known on the coil
surface Γcoil and satisfies condition (3), whilst the vector potential A is determined
from the Poisson equation (5) by employing its integral representation, namely

A(x) =
µ0

4π

∫
R3

J(x′)
|x − x′|dx

′ =
µ0

4π

∫
Γcoil

Jcoil(x′)
|x − x′| dΓ(x′), x ∈ R

3. (6)

On using eqns. (4) and (6), the magnetic flux density may be recast as

B(x) =
µ0

4π

∫
Γcoil

−(x− x′) × Jcoil(x′)
|x − x′|3 dΓ(x′), x ∈ R

3. (7)

Motivated by the design of gradient coils used in MRI, we investigate the recon-
struction of the divergence-free surface current distribution Jcoil from knowledge
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of one component of the magnetic flux density B in a prescribed region of interest
Ω ⊂ R

3, i.e. we focus on the following inverse problem:

Given B̃z(x), x ∈ Ω, find Jcoil(x), x ∈ Γcoil, such that:

Bz(x) = B̃z(x), x ∈ Ω,

∇ · Jcoil(x) = 0, Jcoil(x) · ν(x) = 0, x ∈ Γcoil.

(8)

3 Divergence-free BEM

Assume that the coil surface Γcoil is approximated as Γcoil ≈
N⋃

n=1

Γn, where Γn,

1 ≤ n ≤ N, are triangular boundary elements (not necessarily flat). In the sequel,
we use the following notation:

• Γn := �xn1xn2xn3, 1 ≤ n ≤ N, triangular boundary elements;
• xnj, 1 ≤ j ≤ Ne, local nodes corresponding to the triangular boundary

element Γn, e.g. Ne = 3, Ne = 6 and Ne = 10 in the case of linear,
quadratic and cubic triangular boundary elements, respectively;

• xnj, 1 ≤ j ≤ 3, vertices of the triangular boundary element Γn;
• Γnj, 1 ≤ j ≤ 3, the edge of the triangular boundary element Γn opposite to

the vertex xnj, 1 ≤ j ≤ 3;
• N the number of triangular boundary elements;
• M the number of global nodes on the coil surface Γcoil;
• Ne the number of local nodes corresponding to each triangular boundary

element Γn.

3.1 Geometry of the BEM

The parametrization of the triangular boundary elements is given by

(ξ, η) ∈
{
(ξ, η) |ξ ≥ 0, η ≥ 0, ξ + η ≤ 1

}
�−→ x(ξ, η) ∈ Γn

x(ξ, η) =
Ne∑
j=1

Nj(ξ, η)xnj ,
(9)

where Nj(ξ, η), 1 ≤ j ≤ Ne, are given geometrical shape functions [5]. Conse-
quently, the derivatives in the ξ- and η-directions may be recast as:


τnξ(ξ, η) := τnξ (x(ξ, η)) = ∂x(ξ, η)

∂ξ
=

Ne∑
j=1

∂Nj(ξ, η)
∂ξ

xnj

τnη(ξ, η) := τnη (x(ξ, η)) = ∂x(ξ, η)
∂η

=
Ne∑
j=1

∂Nj(ξ, η)
∂η

xnj.

(10)
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Then the surface metric (Jacobian) Jn and the outward unit vector normal νn to
the triangular boundary element Γn are given by:

Jn(ξ, η) := Jn (x(ξ, η)) = |τ nξ(ξ, η) × τnη(ξ, η)| (11)

and

νn(ξ, η) := νn (x(ξ, η)) =
1

Jn(ξ, η)
τnξ(ξ, η) × τ nη(ξ, η) (12)

respectively.

3.2 Basis functions

On every triangular boundary element Γn, we define the following vectors:
vn1(ξ, η) := vn1 (x(ξ, η)) = − 1

Jn(ξ, η) τ nη(ξ, η)

vn2(ξ, η) := vn2 (x(ξ, η)) = 1
Jn(ξ, η) τnξ(ξ, η)

vn3(ξ, η) := vn3 (x(ξ, η)) = 1
Jn(ξ, η)

[−τnξ(ξ, η) + τ nη(ξ, η)
]
.

(13)

From definition (13), it follows that the vectors vni(ξ, η) satisfy the identity:

3∑
i=1

vni(ξ, η) = 0 for x = x(ξ, η) ∈ Γn. (14)

Next, we define the incidence function i as follows:

i(·, ·) : {1, 2, . . . , M} × {1, 2, . . . , N} −→ {0, 1, 2, 3}

(m, n) �−→ i(m, n) =

{
0 if xm 
= xnj, ∀ j ∈ {1, 2, 3}
j if ∃ j ∈ {1, 2, 3} : xm = xnj.

(15)

For every global node xm, 1 ≤ m ≤ M, we define the set Cm ⊂ Γcoil of triangular
boundary elements Γn, 1 ≤ n ≤ N, adjacent to xm, i.e.

Cm :=
N⋃

n = 1
i(m, n) �= 0

Γn, 1 ≤ m ≤ M. (16)

The vector basis function fm associated to the global node xm is defined by

fm(·) : Γcoil −→ R
3, fm(x) =

{
vn,i(m,n)(x) if x ∈ Cm

0 if x /∈ Cm

(17)

and, clearly, its support is a subset of Cm, i.e. {x ∈ Γcoil |fm (x) 
= 0} ⊂ Cm.
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3.3 Surface current density

The current density Jcoil on the coil surface Γcoil is then approximated by

Jcoil(x) ≈
M∑

m=1

Imfm(x) =
M∑

m=1

Im
N∑

n = 1
i(m, n) �= 0

vn,i(m,n)(x), x ∈ Γcoil, (18)

where Im ∈ R, 1 ≤ m ≤ M, are unknown coefficients that correspond to the
stream function intensities. For direct problems, the stream function intensities
are determined from appropriate boundary conditions, while in the case of inverse
problems, they are obtained by solving a minimisation problem.

It should be noted that the degree of the approximation (18) for the surface
current density Jcoil is one degree less than the degree of the triangular boundary
elements Γn, 1 ≤ n ≤ N, since the vectors vni(ξ, η), 1 ≤ i ≤ 3, are related to
the derivatives of the geometrical shape functions Ni(ξ, η), 1 ≤ i ≤ Ne, asso-
ciated with the triangular boundary element Γn, see eqns. (9) − (13). More pre-
cisely, linear, quadratic and cubic triangular boundary elements provide constant,
linear and quadratic approximations for the surface current density, respectively.
From eqns. (12) and (13) it follows that for every triangular boundary element Γn

the vectors vni(ξ, η), 1 ≤ i ≤ 3, and the outward unit normal vector νn(ξ, η)
are orthogonal and hence expression (18) enforces the approximated current den-
sity Jcoil to lie in the plane tangent to the coil surface Γcoil, i.e. condition (32)
is satisfied. Furthermore, the interpolation given by eqn. (18) is divergence-free

pointwise, i.e. condition (31) is satisfied, since ∇ · ∂x
∂ξ

= ∂
∂ξ

(∇ · x) = 0 and

∇ · ∂x
∂η

= ∂
∂η

(∇ · x) = 0.

3.4 Magnetic vector potential and magnetic flux density

According to eqns. (6), (7) and (18), the magnetic vector potential A and magnetic
flux density B are approximated by

A(x) ≈ µ0

4π

M∑
m=1

Im
N∑

n = 1
i(m, n) �= 0

∫
Γn

vn,i(m,n)(x′)
|x − x′| dΓ(x′), x ∈ R

3 (19)

and

B(x) ≈ µ0

4π

M∑
m=1

Im
N∑

n = 1
i(m, n) �= 0

∫
Γn

−(x− x′) × vn,i(m,n)(x′)
|x− x′|3 dΓ(x′), x ∈ R

3.

(20)
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4 Description of the algorithm

If the z-component of the magnetic flux density B is known at L points in the
region of interest Ω then the BEM discretisation of the inverse problem (8) yields
the following system of linear algebraic equations

HI = B̃z. (21)

Here H ∈ R
L×M is the BEM matrix used for computing the z-component of the

magnetic flux density B given by eqn. (20) calculated at L points in the region of
interest Ω, B̃z = (B̃1

z , . . . , B̃
L
z )T ∈ R

L is a vector containing the z-component of
the magnetic flux density at L points in the region of interest Ω and I ∈ R

M is a
vector containing the unknown values of the stream function Im, 1 ≤ m ≤ M, at
the global nodes.

The system of linear algebraic equations (21) cannot be solved by direct meth-
ods, such as the least-squares method, since such an approach would produce an
inaccurate and/or physically meaningless solution due to the large value of the con-
dition number of the system matrix H which increases dramatically as the BEM
mesh is refined. Several regularization procedures have been developed to solve
such ill-conditioned systems [6, 7]. In the sequel, we only consider the Tikhonov
regularization method and for further details on this method, we refer the reader to
[6].

4.1 Magnetic energy and regularization

The magnetic energy W defined by

W =
1
2

∫
Γcoil

Jcoil(x) ·A(x) dΓ(x) (22)

is approximated, according to eqns. (18) and (19), as

W ≈ 1
2

M∑
m=1

M∑
n=1

Lmn In Im, (23)

where the components of the inductance matrix L = [Lmn] ∈ R
M×M are given by

Lmn := µ0
4π

N∑
m′, n′ = 1

i(m, m′) �= 0
i(n, n′) �= 0

∫
Γm′

∫
Γn′

vm′,i(m,m′)(x) · vn′,i(n,n′)(x′)
|x − x′| dΓ(x′) dΓ(x).

(24)

The approximated magnetic energy W given by eqn. (23) is a quadratic and posi-
tive definite form which induces the following discrete energy norm:

‖I‖2
W := ‖L̃I‖2 =

M∑
m=1

M∑
n=1

Lmn In Im = 2W, (25)
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where L̃ ∈ R
M×M such that L̃T = L̃ and L = L̃TL̃.

The Tikhonov regularized solution Iλ to the inverse problem (8) is sought as [6]

Iλ ∈ R
M : Fλ(Iλ) = min

I∈RM
Fλ(I), (26)

where Fλ is the Tikhonov functional given by

Fλ(·) : R
M −→ [0,∞), Fλ(I) = 1

2‖HI− B̃z‖2 + 1
2λ‖I‖2

W, (27)

with λ > 0 the regularization parameter to be chosen. Formally, the Tikhonov
regularized solution Iλ of the minimisation problem (26) is given by the solution
of the regularized normal equation [6](

HTH + λL̃TL̃
)

Iλ = HT B̃z. (28)

5 Numerical results

In order to present the performance of the proposed method, we solve the inverse
problem (8) for a hemispherical coil Γcoil = ∂B (0, R) ∩ {z ≥ 0}, where R =
0.175 m, whilst the region of interest is a sphere of radius r = 0.065 m and cen-
tered at xc = (0, 0, 0.081), i.e. Ω = B (xc, r). Since the geometry of the coil
considered in this paper is symmetrical with respect to the z-axis, it is sufficient to
investigate only the design of x- and z-gradients, i.e. B̃z (x) = Gx x, x ∈ Ω and
B̃z (x) = Gz z, x ∈ Ω, where Gx = Gz = 1.0 T m−1.

The choice of the regularization parameter λ in the minimisation process of
the Tikhonov functional (27) is crucial for obtaining a stable, accurate and phys-
ically correct numerical solution Iλ. The optimal value λopt of the regularization
parameter λ should be chosen such that a trade-off between the two quantities
‖HI − B̃z‖ and ‖I‖W = ‖L̃I‖ involved in the minimisation of the functional
(27) is attained. To do so, we introduce a global measure for error that relates the
computed and desired z-components of the magnetic flux density in the region of
interest Ω, namely the maximum relative percentage error

Err (Bz; λ) = max
x∈Ω

|Bλ
z (x) − B̃z(x)|
|B̃z(x)| × 100 (29)

where Bλ
z (x) is the numerical z-component of the magnetic flux density calculated

at the point x in the region of interest Ω, for a given regularization parameter λ, by
employing the BEM-based algorithm described in Section 4. On assuming that a
deviation ε > 0 from the desired z-component of the magnetic flux density B̃z is
admissible in Ω, such that

B̃ε
z(x) := B̃z(x) (1 ± ε) , x ∈ Ω, (30)

then the choice of the optimal regularization parameter λopt is made by employing
the maximum relative percentage error given by eqn. (29) and the admissible level
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of noise in Bz|Ω defined by relation (30), namely

λopt = max
{
λ > 0

∣∣∣Err (Bz; λ) ≤ ε
}

. (31)

The numerical solution Iλ of the regularized system of normal equations (28),
with λ = λopt given by eqn. (31), provides only a discrete distribution of the
stream function at the global nodes of the BEM mesh employed. However, these
discrete values should be extended to a continuous distribution of the numerical
stream function over the entire coil surface Γcoil and this is achieved by employing
the contours of the stream function using its discrete distribution and the Mat-
lab (The Mathworks, Inc., Natick, MD, USA) contouring function. Hence, in the
sequel, the numerically retrieved solutions of the inverse problem given by eqn. (8)
are presented in terms of the contours of the stream function as described above.

Figures 1(a) and (b) present the contours of the stream function in the θ − cosφ
plane corresponding to the hemispherical x- and z-gradient coils, respectively,
obtained using the optimal regularization parameter λopt given by eqn. (31), L =
351 internal points in the region of interest and N = 2840 linear, quadratic and
cubic triangular boundary elements. It should be noted that, the so-called Lambert
cylindrical equal-area projection, i.e. the θ − cosφ plane, has been used to repre-
sent the 2D contours of the stream function. From these figures it can be seen that,
for the examples investigated in this study, the numerical results retrieved using
linear boundary elements are more inaccurate than those obtained by employing
higher-order boundary elements, with the mention that there are no major quan-
titative differences between the contours of the stream function corresponding to
quadratic and cubic triangular elements.
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Figure 1: The contours of the stream function corresponding to the hemispherical
(a) x-, and (b) z-gradient coils, obtained using λ = λopt, L = 351 inter-
nal points in Ω and N = 2840 linear ( ), quadratic (− −) and cubic
(· · · ) triangular boundary elements.
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The convergence of the proposed numerical method with respect to refining
the BEM mesh size is illustrated in Figures 2(a) and (b) which present the con-
tours of the stream function corresponding to the hemispherical x- and z-gradient
coils, respectively, obtained using the optimal regularization parameter λopt cho-
sen according to eqn. (31), L = 351 internal points in the region of interest and
various numbers of quadratic triangular boundary elements (Ne = 6), namely
N ∈ {1128, 1888, 2840}. Although an analytical solution for the contours of
the stream function is not available, we can conclude from these figures that the
Tikhonov regularization method described in Section 4, in conjunction with the
divergence-free BEM presented in Section 3, is convergent with respect to increas-
ing the number of boundary elements used to discretise the coil surface Γcoil. Fur-
thermore, the finer the BEM mesh size is then the smoother contours of the stream
function corresponding to the hemispherical x- and z-gradient coils.
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Figure 2: The contours of the stream function corresponding to the hemispherical
(a) x-, and (b) z-gradient coils, obtained using λ = λopt, L = 351 inter-
nal points in Ω and various numbers of quadratic triangular boundary
elements, i.e. Ne = 6, namely N = 1128 ( ), N = 1888 (− −) and
N = 2840 (· · · ).

6 Conclusions

In this paper, we have investigated the design of hemispherical gradient coils for
MRI by considering the reconstruction of a divergence-free surface current dis-
tribution from knowledge of the magnetic flux density in a prescribed region of
interest. This inverse problem was formulated in the framework of static electro-
magnetism using its corresponding integral representation according to potential
theory. In order to retrieve an accurate and physically correct numerical solution
of this inverse problem, a minimisation problem for the Tikhonov functional was
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solved, in conjunction with a novel higher-order BEM which satisfies the conti-
nuity equation for the current density. The numerical solutions were presented in
terms of the contours of the stream function and using various types of boundary
elements. For the examples analysed, it was proved the efficiency of the proposed
method, as well as an improvement in the accuracy of the numerical solutions in
the case of higher-order elements. However, there are no major quantitative differ-
ences between the contours of the stream function corresponding to quadratic and
cubic triangular elements.
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