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Abstract

The advantage of the volume integral equation is that it is possible to clarify
the relationship between fluctuations of the wave field and radiation of scattered
waves. This paper proposes a method to obtain a sparse matrix for the volume
integral equation for elastic wave propagation. The formulation employed here is
based on the wavenumber domain solution together with usage of Haar scaling
functions. The unitarity of the Fourier transform in terms of the Haar scaling
function reveals that the integral equation is transformed into a linear algebraic
equation with a sparse matrix. Numerical calculations are carried out to verify the
proposed formulation.
Keywords: elastic waves, volume integral equation, sparse matrix, unitary
transform, Haar scaling function.

1 Introduction

Since 1980s, the boundary element technique has been recognized as an efficient
tool for the analysis of wave propagation (for example, Brebbia and Walker [3]).
On the other hand, the volume integral equation methods have not been used very
often except for some cases (for example, Kitahara et al [5]). The advantage of
the volume integral equation such as the Lippmann–Schwinger equation (Colton
and Kress [4]) is in that it clarifies the relationship between the fluctuation of the
medium and the radiation of scattered waves. Standard technique for discretizing
the equation, however, leads to a large and dense matrix for the volume integral
equation, that makes sometimes numerical analysis impossible even by recent high
performance computers.
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In this paper, a method for obtaining a sparse matrix from the volume integral
equation is presented. The method is based on the usage of the Fourier transform
and the Haar scaling function (Williams and Amaratunga [7]). The volume integral
equation in the wavenumber domain is discretized by means of the Haar scaling
function. The unitarity of the Fourier transform shows that the Fourier inverse
transform of the Haar scaling functions form the orthonormal basis and as a result,
a sparse matrix is found to be derived from the volume integral equation in the
case that the spectral structure of the fluctuation of the wave field is narrow band.
Several numerical calculations are carried out to verify the accuracy of the present
method.

2 Theoretical formulation

2.1 Basic equations

An elastic full space of three dimension is considered in this paper. The elastic
wave field is assumed to have a fluctuation represented by the Lamé constants
such that

λ(x) = λ0 + λ̃1(x)

µ(x) = µ0 + µ̃1(x), (x ∈ R
3) (1)

where λ0 and µ0 are the background Lamé constants and λ̃ and µ̃ are their
fluctuations. Note that x ∈ R

3 denotes the spatial point. The governing equation
for the elastic wave propagation for the medium can be derived according to the
literature (for example, Aki and Richards [1]). The governing equation is expressed
by

(λ0 + µ0)∂i∂juj + µ0∂k∂kui + ρω2ui = Nijuj (2)

where ui is the displacement field whose subscript denotes the component of
the Cartesian coordinate, ρ is the mass density, ω is the circular frequency, ∂
is the partial differential operator whose subscript denotes the parameter for the
differentiation and Nij is the operator describing the fluctuation of the elastic
medium. The summation convention is applied to the subscript index for the
component of the coordinate. The explicit form of Nij is expressed by

Nij = −(λ̃(x) + µ̃(x))∂i∂j − δij µ̃(x)∂k∂k

− ∂iλ̃(x)∂j − δij∂kµ̃(x)∂k − ∂j µ̃(x)∂i (3)

where δij is the Kronecker delta. The volume integral equation for the elastic wave
field is directly derived from Eq. (2), which is

ui(x) = fi(x) −
∫

R3
gij(x, y)Njk(y)uk(y)dy (4)
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where fi is the plane incident wave and gij(x, y) is the Green’s function expressed
by

gij(x, y) =
1

4πµ0
δij

(
Z

(T )
1 (r) + Z

(T )
2 (r) − (cT /cL)2Z(L)

2 (r)
)

+
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4πµ0
∂ir ∂jr

(
Z

(T )
3 (r) − (cT /cL)2Z3(r)

)
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In Eq. (5), r = |x − y| and Z
(p)
j (r), j = 1, 2, 3, p = T, L is the function defined

by

Z
(p)
1 (r) =

1
r

exp(ikpr)

Z
(p)
2 (r) = −1

r
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+
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kpr
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where kT and kL are the wavenumber of the S and P waves, respectively.

2.2 Fourier transform of Integral equation

The formulation presented here employs the Fourier integral transform for the
volume integral equation. The Fourier and its inverse integral transforms (Reed
and Simon [6]) are respectively expressed as

f̂(ξ) =
1√
2π

3

∫
R3

f(x) exp(−iξ · x)dx

f̌(x) =
1√
2π

3

∫
R3

f(ξ) exp(iξ · x)dξ (7)

where f̂ denotes the Fourier transform of f and f̌ denotes the Fourier inverse
transform of f . Note that ξ ∈ R

3 is used for the point in the wavenumber space.
The Fourier transform of the volume integral equation in terms of scattered wave
vi(x) = ui(x) − fi(x) becomes as

v̂i(ξ) = −ĥij(ξ)q̂j(ξ − ξp) − ĥij(ξ)ŵj(ξ) (8)

wj(x) = Njk(x)vk(x) (9)

where ĥij(ξ) is related to the Fourier transform of the Green’s function that is
expressed by

ĥj(ξ) =
δij

µ0(|ξ|2 − k2
T + iε)

− ξiξj

2µ0(1 − ν)(|ξ|2 − k2
T + iε)(|ξ|2 − k2

L + iε)
(10)
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Note that ε in Eq. (10) is the infinitesimal positive number and ν is the Poisson
ratio. In addition, ξp in Eq.(8) is the wavenumber vector of the plane incident wave
and q̂ is the function related to the fluctuation of the medium and plane incident
wave.

2.3 Discretization of the volume integral equation

The Fourier transformed volume integral equation shown in Eq. (8) can be
discretized by means of the Haar scaling functions. Let {φα(ξ)}N

α=1 is the set
of the Haar scaling functions embedded in the wavenumber space, where α is
the integer to identify the element of the set of the Haar scaling functions. In the
following formulation, the Greek character used for the subscript is for identifying
the Haar scaling functions. For each α, φα has the resolution and integer shift
vector such that

φα(ξ) = 2mα/2
3∏

j=1

φ(2mαξj − Γj(α)) (11)

where mα is the resolution, Γj(α), j = 1, 2, 3 is the component of the integer shift
vector and φ is the Haar box function such that

φ(x) =

{
1 (0 ≤ x < 1)
0 otherwise

(x ∈ R) (12)

The set of the Haar scaling functions is set up so that the support of each element
is disjoint each other. Namely,

supp φα(ξ) ∩ supp φβ(ξ) = ∅ (α �= β) (13)

In addition, the set of the Haar scaling function fills a region in the wavenumber
space C densely,

C \
N⋃

α=1

supp φα = ∅ (14)

The region C is set up such that

C = {ξ = (ξ1, ξ2, ξ3) | − L ≤ ξj ≤ L, j = 1, 2, 3} (15)

where L is the positive number, which is taken large enough for the numerical
calculation. Due to the above properties, the set of the Haar scaling functions forms
the orthogonal basis in the wavenumber domain. Namely,

〈φα(ξ), φβ(ξ)〉 = δαβ (16)

where 〈·, ·〉 is the scalar product of the functions defined by

〈f(ξ), g(ξ)〉 =
∫

R3
f∗(ξ)g(ξ)dξ (17)
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Note that the Fourier inverse transform of the Haar scaling functions also form the
orthonormal basis according to the unitarity of the Fourier transform. Therefore,
the following equation can be established:

〈φ̌α(x), φ̌β(x)〉 = δαβ (18)

where φ̌α is the Fourier inverse transform of the Haar scaling function:

φ̌α(x) =
1√

2mα+1π
3 ×

3∏
k=1

sin θk(α)

θk(α)
exp

(
iθk(α)(2Γk(α) + 1)

)
(19)

where
θk(α) =

xk

2mα+1
(20)

At this stage, we are in a situation in that we can discretize the integral equation
(8). We expand each variable of Eq. (8) such that

v̂i(ξ) =
∑

α

V̂i(α)φα(ξ)

ĥij(ξ) =
∑

α

Ĥij(α)φα(ξ)

q̂j(ξ) =
∑

α

Q̂j(α)φα(ξ)

ŵj(ξ) =
∑

α

Ŵj(α)φα(ξ) (21)

Then, Eq. (8) can be modified into

V̂i(α) = −cαĤij(α)Q̂j(α) − cαĤij(α)Ŵj(α) (22)

For Eq. (22), the following equation:

φα(ξ)φβ(ξ) = cαδαβ (23)

where

cα =
(
2mα/2

)3

(24)

is used. To discretize Eq. (9), the Fourier inverse transform of v̂i and ŵj which has
the following forms

vi(x) =
∑

α

V̂i(α)φ̌α(x)

wj(x) =
∑

α

Ŵj(α)φ̌α(x) (25)
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are used. Substituting Eq. (25) into Eq. (9) as well as using the orthogonality
relation shown in Eq. (18) leads to the following equation:

Ŵi(α) = Sij(αβ)V̂j(β) (26)

where Sij(αβ) is due to the following operation:

Sij(αβ) = 〈φ̌α, Nij φ̌β〉 (27)

As a result, the following linear algebraic equation in terms of V̂i(α) is derived:

V̂i(α) = Fi(α) − Aik(αβ)V̂k(β) (28)

where

Fi(α) = −cαĤij(α)Q̂j(α)

Aik(αβ) = cαĤij(α)Sjk(αβ) (29)

The scattered wave field can be derived by solving Eq. (28), since we have

vi(x) =
∑

α

V̂i(α)φ̌(x) (30)

At the end of the formulation, note that the operation of the product shown
in Eq. (27) can be carried out without difficulty. To carry out the operation, the
fluctuation of the lamé constants λ̃ and µ̃ are expanded such that

λ̃(x) =
∑
β∈B

Λβφ̌

∂j λ̃ =
∑
β∈B

Λ(j)
β φ̌(x)

µ̃(x) =
∑
β∈B

Mβφ̌

∂jµ̃ =
∑
β∈B

M
(j)
β φ̌(x) (31)

where B is the set of index for expressing the fluctuation of the Lamé constants.
Substituting Eq, (31) into Eq. (27) clarifies that the operation for Eq. (27) can

be constituted by the following integral formulas:

Sij(αγ) =
∑
β∈B

∑
p

γp

∫
R3

φ̌∗
α(x)φ̌β(x)∂pφ̌γ(x)dx (32)

where p = (p1, p2, p3) and ∂p = ∂p1
1 ∂p2

2 ∂p3
3 . In addition, γp in Eq. (32) is uniquely

determined by Nij and coefficients Λβ , Λ(j)
β , Mβ and M

(j)
β in Eq. (31). The closed

form of the result of the integral of Eq. (32) is possible, which leads to the fact that
the matrix Sij(αγ) is sparse in the case that the range of set of B is narrow. Namely,
in the case that the spectral structure of the fluctuation of the Lamé constants is
narrow band, a sparse matrix is obtained.
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Figure 1: Analyzed model. Figure 2: Fluctuation of the Lamé con-
stants.

3 Numerical examples

3.1 Analyzed model

The concept of the analyzed model is shown in Figure 1, in that the plane incident
wave is propagating to the fluctuated area along x3 axis. The background Lamé
constants are set at λ0 =2 [GPa], µ0=1 [GPa] and the mass density of the wave
field is ρ = 1 [g/cm3]. In addition, the frequency of the wave field is 1 [Hz].
Therefore, the P wavenumber of the background wave field is kL = 3.14 [km−1]
and the S wavenumber of that is kT = 6.28 [km−1]. The fluctuation of the Lamé
constants are set at

λ̃(x) = 0.1 exp(−0.1|x|2)
µ̃(x) = 0.1 exp(−0.1|x|2) [Gpa] (33)

The fluctuation of Lamé constant at x3 = 0 plane is shown in Figure 2. As shown
in Figure 2, the fluctuation gradually decreases towards the far field range. The
Fourier transform of the fluctuation of the Lamé constants for Eq. (33) becomes

ˆ̃
λ(ξ) = ˆ̃µ(ξ) =

1√
2η

3 exp(−|ξ|2/(4η), (η = 0.1) (34)

As can be seen in the following, the spectral structure of the fluctuation of the
Lamé constants is narrow enough to generate a sparse matrix.

3.2 Haar scaling functions used for the analysis

As shown in the formulation, the volume integral equation is discretized by the
Haar scaling functions in the wavenumber space. Figures 3 to 6 are the location
of the Haar scaling functions in the wavenumber space, where sj, j = 1, 2, 3
indicates the dimensionless wavenumber defined by sj = ξ/kT . The wavenumber
space is spanned by the Haar basis for the region −10 ≤ sj ≤ 10(j = 1, 2, 3).

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  251



-4
-2

0
2

4s1 axis
-4

-2

0

2

4

s2 axis

-4

-2

0

2

4

s3 axis

-1
-0.5

0
0.5

1s1 axis
-1

-0.5
0

0.5
1

s2 axis 

-1

-0.5

0

0.5

1

s3 axis 

Figure 3: Haar scaling functions in the
wavenumber space (m = 1 ∼
3).

Figure 4: Haar scaling functions in the
wavenumber space (m = 4).
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Figure 5: Haar scaling functions in the
wavenumber space (m = 5).

Figure 6: Haar scaling functions in the
wavenumber space (m = 6).

The resolution m ranges from 1 to 6, that is for the dimensionless wavenumber. In
these figures, the center of the supports of the Haar scaling functions are plotted.
The size of the supports become smaller as the resolution increases. As a result, the
resolution of the Haar basis is described by the density of the points. The higher
resolution of the Haar basis is used for the region close to singular point of the
Green’s function in the wavenumber domain. To simplify the view of the location
of the Haar basis, the Haar basis is shown in the region −4 ≤ sj ≤ 4(j = 1, 2, 3)
in figure 3. Note that the resolution of the Haar scaling functions that located
farthest outside the region is m = 1. The number of the Haar scaling functions
used for the analysis here are 97824.

3.3 Sparse matrix obtained from the present procedure

Figure 7 shows the structure of the matrix obtained form the Haar scaling functions
shown in Figures 3-6. In figure 7, the non-zero elements are plotted. Those
non-zero elements are judged from Eq. (32). The size of the matrix is about
290, 000 × 290, 000 with the sparse ratio 2.8%. To solve the linear algebraic
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spherical harmonics
present method

-6

-4

-2

 0

 2

 4

 6

 axis [km]

-4
-2

 0
 2

 4
 6

x 2 axis [km]

 0

 0.3

Displacement [cm]

x1

-10
-5

0
5

10x3 axis [km]
-10

-5

0

5

10

x1 axis [km]

-0.4
-0.2

0
0.2
0.4

Displacement [cm]

Figure 9: Comparison of displacement
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Figure 10: Displacements in x1 − x3

plane.

equation, the iterative scheme of Bi-CGSTAB method (Barrett et al [2]) is
employed. The elapsed time for solving the matrix was about 5 minutes by IBM
pSeries 690 provided by Tokyo University of Science, for the case of 32-cpu
parallel processing. The number of iteration for the convergence of the solution
was three. The condition for the convergence of the linear algebraic equation
Ax = b is |Ay − b| < 0.001|b|, where A is the coefficient matrix and y is
the approximate solution.

3.4 Properties of the scattered wave field

Now, assume that the plane incident wave propagating along x3 axis is P wave. The
comparison of the displacement of the scattered wave field between the present
method and the spherical harmonics expansion is shown in figure 8. In the figure,
the displacement component of x3 direction are compared along x3 axis. Good
agreements can be found in both two methods in figure 8, which validates the
accuracy of the present method. The amplitude of the backward scattering is found
to be very small in figure 8, while that of the forward scattering is relatively
large and decreases slowly towards the far field region. The slow decrease of
the displacement amplitude is due to the slow decrees of the fluctuation of the
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Lamé constants towards the far field region, which is shown in figure 2. Figure 9
shows the distribution of the displacement amplitude at x3 = 2 km, in which the
displacement amplitude is also compared with the spherical harmonics expansion.
As can be seen in figure 9, the peak value of the displacement amplitude is
found in the origin of the x3 plane. The displacement slowly decreases toward
the far field region. The direction of the displacement is outstanding in the x3

component, which indicates that the scattered waves are mainly constituted by P
wave. Figure 10 shows the distribution of the displacement of x3 component in
x1 − x3 plane. It is found from figure 10 that the scattered wave does not spread
widely in the forward region, indicating that the scattered waves here has rather
strong directionality.

4 Conclusion

A method for obtaining a sparse matrix was presented in this paper for the volume
integral equation. The Fourier transform was employed to the volume integral
equation. The usage of the Haar scaling functions in the wavenumber domain as
well as the unitarity of the Fourier transform revealed that a sparse matrix was
derived from the volume integral equation. A iterative scheme for solving the
linear algebraic equation was found to be successfully applied to the sparse matrix.
Numerical results ensured the validity and accuracy of the present method.
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