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Abstract 

In this work, the plate bending formulation of the boundary element method 
(BEM) based on the Reissner’s hypothesis is extended to the analysis of zoned 
plates in order to model a building floor structure. In the proposed formulation 
each sub-region defines a beam or a slab and depending on the way the sub-
regions are represented, one can have two different types of analysis. In the 
simple bending problem all sub-regions are defined by their middle surface. On 
the other hand, for the coupled stretching–bending problem all sub-regions are 
referred to a chosen reference surface, therefore eccentricity effects are taken 
into account. Equilibrium and compatibility conditions are automatically 
imposed by the integral equations, which treat this composed structure as a 
single body. The bending and stretching values defined on the interfaces are 
approximated along the beam width, reducing therefore the number of degrees of 
freedom. Then, in the proposed model the set of equations is written in terms of 
the problem values on the beam axis and on the external boundary without 
beams. Finally some numerical examples are presented to show the accuracy of 
the proposed model. 
Keywords: plate bending, boundary elements, building floor structures. 

1 Introduction 

The boundary element method (BEM) has already proved to be a suitable 
numerical tool to deal with plate bending problems. The method is particularly 
recommended to evaluate internal force concentrations due to loads distributed 
over small regions that very often appear in practical problems. Moreover, the 
same order of errors is expected when computing deflections, slopes, moments 
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and shear forces. They are not obtained by differentiating approximation 
function as for other numerical techniques. 
     Several models to analyze plate reinforced by beams, using BEM coupled 
with the finite element method (FEM), have already been proposed (see Hu and 
Hartley [1], Tanaka. and Bercin [2], Sapountzakis and Katsikadelis [3]). In those 
works the BEM and FEM approximate, respectively, plate and beam elements. 
However, for complex floor structures the number of degrees of freedom may 
increase rapidly diminishing the solution accuracy.  
     An alternative scheme to reduce the number of degrees of freedom has been 
recently proposed by Fernandes and Venturini in [4] and [5] using only a BEM 
formulation based on Kirchhoff’s hypothesis, where the building floor is 
modeled by a zoned plate. In the first work is proposed a formulation to perform 
simple bending analysis where the tractions are eliminated along the interfaces. 
Moreover in order to reduce the number of degrees of freedom some Kinematics 
assumptions were made along the beam width. In the second work this 
formulation is extended to take into account the membrane effects which are 
associated with bending due to the relative positions of the structural elements.  
     In this work the BEM formulation developed in [5] is modified to take into 
account the Reissner’s hypothesis instead of the Kirchhoff’s. In the proposed 
model the tractions related to the bending problem is no longer eliminated on the 
interfaces. Therefore traction and displacements related to both problems 
(bending and stretching) are approximated along the beam width, leading to a 
model where the problem values are defined only on the beams axis and on the 
plate boundary without beams. The accuracy of the proposed model is illustrated 
by numerical examples whose analytical results are known. 
     Note that in the Kirchhoff’s theory (see Fernandes and Venturini [5], 
Hartmann and Zotemantel [6] and Kirchhoff [7]) are defined only four boundary 
values and its inaccuracy turns out to be important for thick plates, especially in 
the edge zone of the plate and around holes whose diameter is not larger than the 
plate thickness. In the Reissner’s theory (see Reissner [8], Weën [9] and 
Palermo [10]) which can be used either for thin or thick plates, are defined six 
boundary values and it is more accurate because it takes into account the shear 
deformation effect. 

2 Basic equations 

Without loss of generality, let us consider the plate depicted in figure 1(a), where 
t1, t2 and t3 are the thicknesses of the sub-regions Ω1, Ω2 and Ω3, whose external 
boundaries are Γ1, Γ2 and Γ3, respectively. The total external boundary is given 
by Γ while Γjk represents the interface between the adjacent sub-regions Ωj and 
Ωk.. In the simple bending analysis all sub-regions are represented by their 
middle surface, as shown in figure 1(c), while for the coupled stretching-bending 
problem the Cartesian system of co-ordinates (axes x1, x2 and x3) is defined on a 
chosen reference surface (see figure 1(b)), whose distance to the sub-regions 
middle surfaces are given by c1, c2 and c3.  As in figure 1(b) the reference surface 
is adopted coincident to Ω2 middle surface one has c2=0. 
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Figure 1: (a) Reinforced plate; (b) reference surface view, (c) middle surface 
view. 

     Let us consider initially, the bending problem. For a point placed at any of 
those plate sub-regions, the following equations are defined: 

-The equilibrium equations in terms of internal forces: 
 

0Qijij =−,M                         i, j =1, 2                             (1) 
0gQ ii =+,                                               (2) 

 
where g is the distributed load acting on the plate middle surface, mij are bending 
and twisting moments and Qi represents shear forces. 

-The generalised internal forces written in terms of displacement: 
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where φ i is the rotation in the i direction, w the deflection, D=Et3/(1-ν2) the 
flexural rigidity, ν the Poisson’s ration, λ a constant related to shear effect given 
by t10 /=λ  and ijδ  is the Kronecker delta. 

-Finally, the plate bending differential equations given by: 
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where ww 4
iijj ∇=, , being 4∇  the bi-harmonic operator; ww 2

ii ∇=,  being 2∇  the 
bi-Laplacian operator. 
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     Equations (5) and (6) result into the set of differential equations, being eqns. 
(5) and. (6) a second and fourth order equation, respectively, leading therefore to 
six independent boundary values: Mn, Mns, Qn, w, φ n and φ s being (n, s) the 
local co-ordinate system, with n and s referred to the plate boundary normal and 
tangential directions, respectively. 
     Considering now the stretching problem, the in-plane equilibrium equation is: 

 

0bN ijij =+,                                       (7) 
 

where bi are body forces distributed over the plate middle surface and Nij is the 
membrane internal force, which, for plane stress conditions, can be written in 
terms of the in-plane displacements ui derivatives as follow: 
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     The problem definition is then completed by assuming the following 
boundary conditions over Γ: ii UU =  on Γu (generalised displacements: 

deflections, rotations and in-plane displacements) and ii PP =  on Γp (generalised 
tractions: bending and twisting moments, shear forces and in-plane tractions), 
where ΓΓΓ =∪ pu . Note that the in-plane displacements and tractions are 
considered only for the coupled stretching-bending problem. 

3 Integral representations 

For the simple bending problem the following weighted residual equation can be 
written for a simple plate:  
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where the superscript * refers to the fundamental problem; k is the fundamental 
load direction with k = 1, 2 defining unit moments applied in the x1 and x2 
directions and k=3 is related to a unit load acting in the x3 direction. 
     Integrating (9) by parts twice, considering eqns (3) and (4) and writing the 
values in terms of the local system of coordinates (n,s), the integral equation of 
the generalised displacements can be obtained: 

 

( ) ( ) Ωφ
λν

ν

Ω

d
1

wgqUqc
g

iki2kk ∫ 







−

−= ,)( ** [ ] +++− ∫ Γφφ
Γ

dwQMM knknssknn
***  

[ ] Γφφ
Γ

dwQMM knksnsknn∫ +++ ***        k=m, l, 3;       i=1, 2      (10) 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

226  Boundary Elements and Other Mesh Reduction Methods XXIX



where q is the collocation point, Ωg the area where the load g is distributed, c(q) 
is the free term given by: c(q) = 0, c(q) = 1 and c(Q) = 1/2, respectively, for 
external, internal and boundary points; Um=φ m Ul=φ l and U3=w, being m and l 
the local system (n, s) for boundary points or any direction for internal points. 
     For a zoned plate, as the one depicted in the figure 1, eqn. (10) is valid to each 
sub-region separately. Then, taking into account the equilibrium and 
compatibility conditions, writing eqn. (10) to all sub-regions and summing them 
one can write the integral representation for the simple bending problem: 

 

( ) ( ) Ωφ
λν

ν

Ω
Σ d

1
wgqU

g

s

i
j

ki2
j

k

N

1j
k ∫ 








−

−=
=

,**

1

* * *

1

sN
j j j

n kn s kns kn
j

M M wQ dφ φ
= Γ

 − + + Γ Σ∫

[ ] [ ]{∫ +−+−−
= ja

a
kns

j
knss

a
kn

j
knn

N

1j
MMMM

Γ

φφΣ ****
int

}* *j a
kn knw Q Q d − Γ   

1

* * *

1

sN
j j j

n kn ns ks n k
j

M M Q w dφ φ
= Γ

 + + + Γ Σ∫  

[ ] [ ]{∫ +−+−+
= ja

a
ks

j
ksns

a
kn

j
knn

N

1j
MM

Γ

φφφφΣ ****
int [ ]} ΓdwwQ a

k
1

kn
** −      (11) 

 

where Ns and Nint are the sub-regions and interfaces number, Γja represents a 
interface for which the subscript a denotes the adjacent sub-region to Ωj 
     The bending equation for the coupled stretching-bending problem is obtained 
from eqn. (11) by writing the moment values on the Ωj middle surface in terms 
of their values on the reference surface ( r

nM  and r
nsM ), as follow: 
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where pn and ps are the in-plane tractions. 
     Then the bending integral equation for the coupled problem, where all values 
are referred to the reference surface, reads: 
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     Let us now consider the stretching problem. For simplicity and also to 
eliminate the in-plane tractions along the interfaces, the fundamental value )*( j

kiu  

related to jΩ  will be written in terms of *
kiu  referred to the sub-region where the 

collocation point is placed as follow:  
 

jki
j

ki EEuu /*)*( =                                               (15) 
 

where jjj tEE = . 
     From the weighted residual method and considering eqn. (15) one can derive 
the integral representation of displacements for one sub-region. The integral 
equation for a zoned plate is obtained by summing the equations of all sub-
regions and enforcing equilibrium and compatibility conditions along interfaces. 
Moreover for the coupled problem the in-plane displacements defined over the 
middle surface (us and un) have to be written in terms of their values on the 
reference surface ( ij

r
i

j
i cuu φ−= , with i=n,s). Then the following stretching 

integral equation for the coupled stretching-bending problem can be obtained: 
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     Note that in eqn (16) the in-plane tractions were eliminated from the 
interfaces, where the only remaining values are the displacements. 
     Let us now consider the beam B3 represented in figure 2(a) by the sub-region 
Ω3. In order to reduce the number of degrees of freedom, the displacements w, us, 
un, φ s and φ n will be assumed to be linear along the beam width, leading to a 
model where the values are defined along the beam skeleton line instead of its 
boundary. Thus the displacement related to the beam interfaces are translated to 
the skeleton line, as follows: 
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where b3 is the beam width , ij

k
Γφ , ij

kuΓ  and ijwΓ  are displacement components 

along the interface Γij; kφ , w, nk ,φ , nku ,  and w,n are skeleton line components. 
     Observe that adopting the approximations defined in eqns (17) and (18), new 
variables related to the beam axis appear in the formulation: the rotations w,n us,n 
and un,n and the curvatures φ s,n and φ n,n whose integral representations can be 
easily obtained by differentiating eqns. (11), (14) or (16). 
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Figure 2: (a) reinforced plate view; (b) deflection approximations along 
interfaces. 

     The tractions defined on the interfaces will be written in terms of its 
components along the beam axis as follows: 
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where Mn, Mns, Qn and pi refers to the beam axis while the tractions with 
superscripts Γij are related to the local coordinate system defined on interface Γij.  
     As the integrals are still performed on the interfaces and the collocation points 
are adopted on the beam axis, there is no problem of singularities. 
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4 Algebraic equations 

The integral representations (11), (14) or (16) have to be transformed into 
algebraic expressions after discretizing the boundary and interfaces into 
elements. It has been adopted linear elements to approximate the problem 
geometry while the variables were approximated by quadratic shape functions. 
     Let us initially consider the simple bending analysis. Six values (w, φ n, φ s, 
Qn, Mn and Mns) are defined along the external boundary without beams, being 
three of them prescribed. Thus, in this case one has adopted to write eqn. (11) for 
an external collocation point very near to the boundary node. On the beam axis 
one has nine values: w, φ n, φ s, φ s,n, φ n,n, w,n, Qn, Mn and Mns with collocation 
points adopted on the skeleton line coincident to the node or defined at element 
internal points when variable discontinuity is required at the element end. For 
external beams nodes the displacements φ s,n, φ n,n and w,n are problem 
unknowns while three of the remaining values must be prescribed, requiring 
therefore six equations. In this case, one writes eqn. (11) plus the equations of 
φ s,n, φ n,n and w,n. for each collocation point. As all the nine values remain as 
unknowns for the internal beams nodes, in this case besides the equations 
adopted for the external beam nodes we also write the representations of Qn, Mn 
and Mns. 
     For the coupled stretching-bending problem, in addition to the values and 
equations defined previously for the simple bending problem one has to consider 
those related to the stretching problem. Along the external boundary without 
beams one has also the values us, un, pn and ps, being two of them prescribed. 
Thus in this case one has chosen to write eqns. (14) and (16) for each external 
collocation point. On beam nodes are also defined the following values: us, un, 
us,n, un,n, pn and ps All these values remain as unknowns in the internal beams, 
requiring therefore fifteen algebraic equations for each skeleton line point. In this 
case the adopted equations were those corresponding to the unknowns. For 
external beams, the displacements us,n and un,n are also problem unknowns while 
two of the four values: us, un, pn and ps,  must be prescribed, leading to ten 
unknowns for each external beam node. It has been adopted to write eqns (14), 
(16) plus the following ones: us,n, un,n, φ s,n, φ n,n and w,n.  
     After writing the recommended algebraic relations one obtains the set of 
equations, which can be solved after applying the boundary conditions. For 
simple bending analysis and the coupled problem they are given, respectively by: 
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where {U} and {P} are displacement and traction vectors, respectively; {T} is 
the independent vector due to the applied loads; [H] and [G] are matrices 
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obtained by integrating all boundary and interfaces; B and S are related to 
bending and stretching problems. 
     In eqn. (25) the upper e bottom parts indicate, respectively, algebraic 
equations of the bending and stretching problems. 

5 Numerical application 

Let us consider the plate reinforced by two external beams depicted in figure 1, 
adopting t1=t3=25cm, t2=10.0cm, Young’s modulus E=2.7x104kN/cm2 and 
Poisson’s ratio ν=0.0. The two sides containing the beams are assumed free, 
while the other two are simply supported. The plate sides without beams as well 
as the beam axis were discretized by 12 quadratic elements (Figure 3), giving the 
total amount of 48 elements and 100 nodes. Observe that the element coincident 
to the beam width is automatically generated by the code.  
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Figure 3: Discretization. 

 

Table 1:  Displacements at internal and boundary nodes. 

Nodes x2 
(cm) 

w(cm) 
SB 

w (cm) 
CP 

φ 2 
SB 

φ 2 
CP 

1 to 25 -100 0 0. -0.006667 0.007407 
101, 102, 103, 94, 32 -50 0.25 -0.2777 -0.003333 0.003333 
104, 105, 106, 38, 88 0 0.33 -0.3703 0.0 0.0 

 
     For both analyses one has prescribed appropriate boundary values to enforce 
constant curvatures over the entire structural element. So that displacements and 
internal forces would have exact solutions. For the simple bending analysis (see 
figure 1(c)) we have applied Mn=150 kNcm/cm and Mn= 2.34375x103 
kNcm/cm, respectively, along the simply supported plate boundary and on the 
beam simply supported ends (the beam width). The prescribed loads, for the 
coupled stretching-bending problem (see figure 1(b)), were: Mn=-
1.666667x105Ncm/cm on the simply supported plate boundary; 
pn=3.75x105kN/cm and Mn=-5.416667x106Ncm/cm along the beam width. As 
expected, for both analyses the computed values are exactly the theoretical ones 
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(see table 1, where SB and CP mean, respectively, simple bending and coupled 
problem). 

6 Conclusions 

BEM formulations based on Reissner’s hypothesis for analysing plate reinforced 
by beams have been presented. Some approximations for displacements and 
tractions along the beam cross section have been considered, leading to a model 
where the problem values are defined on the beam axis. The performance of the 
proposed formulation has been confirmed by comparing the results with 
analytical solutions. 
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