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Abstract

A numerical study of double-diffusive natural convection in porous media
using the Boundary Element Method is presented. The studied configuration
is a horizontal layer filled with fluid saturated porous media, where different
temperature and concentration values are applied on the horizontal walls, while
the vertical walls are adiabatic and impermeable. Transport phenomena in porous
media are described with the use of modified Navier–Stokes equations in the form
of conservation laws for mass, momentum, energy and species. The results for
different governing parameters (Rayleigh number, Darcy number, buoyancy ratio
and Lewis number) are presented and compared with those in published studies.
Keywords: Boundary Element Method, porous media, double-diffusive natural
convection.

1 Introduction

Transport phenomena in porous medium is a subject of intensive research in last
couple decades, mainly because of wide range of applications in many engineering
branches. Problems of natural convection in porous media are most commonly
studied examples. Many reported studies are dealing with natural convection
driven by thermally buoyancy forces. A related problem that has received less
attention is the so-called double-diffusive convection, where density differences
occur due to combined thermal and compositional gradients across the porous
layer. Some applications, where thermal natural convection or combined double-
diffusive natural convection are observed, are fibrous insulation, geothermal
energy, underground spreading of contaminants, solidification processes.

In horizontal layers, where horizontal walls are maintained at different
temperatures and solute concentrations, the convective flow is possible above the
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critical Rayleigh number. In cases where the density differences are a result of
combined temperature and concentration gradients, the critical Rayleigh number
is a function of the Darcy number, Lewis number and buoyancy coefficient [1].
The flow structure in these cases becomes multi-cellular and is also called a
Rayleigh–Benard flow structure [2]. Most of the studies regarding double-diffusive
convection or thermohaline convection (the case where the constituent is salt) in
a horizontal porous layers are focused on the problem of convective instability.
There are many studies dealing with the onset of convection on the basis of linear
stability theory [3, 4] or nonlinear perturbation theory [5]. In these studies the
critical Rayleigh numbers for the onset of convective flows are predicted. The
theoretical and numerical study of heat and mass transfer affected by a high
Rayleigh number Benard convection in a porous layer heated from below is
obtained in [6]. The numerical results and a scale analysis of the flow in a porous
medium are presented, where the buoyancy effect is due entirely to temperature
gradients.

Some further numerical results for a double-diffusive convection in a horizontal
porous layer with two opposing buoyancy sources can be found in [7]. The
influence of the governing parameters (Rayleigh number, Lewis number, buoyancy
ratio) on the overall heat and mass transfer is discussed for the case of a square
cavity. Double diffusive convection in a horizontal layer with some numerical
results is also discussed in [8]. The critical values of Rayleigh numbers for
the onset of convection are predicted on the basis of nonlinear parallel flow
approximation.

All the above-mentioned numerical results are obtained on the basis of the Darcy
flow model, which is more convenient for porous media with low permeability.
The Brinkman extended Darcy model, on the other hand accounts for friction due
to macroscopic shear is thus more appropriate when describing fluid flows in the
porous matrix. This model was used in [1] to investigate the onset and development
of double-diffusive convection in a horizontal porous layer with uniform heat
and mass fluxes specified at the horizontal boundaries. The obtained analytical
solutions are compared to some numerical results for different values of governing
parameters.

The present study is focused on the development of the Boundary Element
Method, for the problem of combined heat and mass transfer through horizontal
porous layer. The Brinkman extended Darcy formulation is used to model the
fluid flow in porous media, where the momentum equation is equivalent to the
classical Navier–Stokes equations for pure fluid flow. The general set of equations
is transformed with use of velocity-vorticity formulation, which consequently
separates the numerical scheme into a kinematic and kinetic computational
part [9].

2 Mathematical formulation

The configuration studied in the present paper is shown in fig. 1.
It is a horizontal layer of width D and height H , filled with homogenous

nondeformable porous media, fully saturated with Newtonian fluid. The horizontal
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Figure 1: Geometry of a horizontal layer with boundary conditions.

walls are subjected to different temperature and concentration values (TB, CB

at the bottom boundary and TU , CU at the upper boundary), while the vertical
walls are adiabatic and impermeable. The fluid saturating the porous media is
modelled as a Boussinesq incompressible fluid, where the density depends only on
temperature and concentration variations: ρ = ρ0(1−βT (T −T0)−βC(C−C0)),
where the subscript 0 refers to a reference state, βT and βC are volumetric thermal
and concentration expansion coefficients.

Transport phenomena in porous media is described using modified Navier–
Stokes equations. The general set of macroscopic equations for conservation of
mass, momentum, energy and species are written considering the fact that only a
part of the volume, expressed with porosity (φ) is available for the flow of the fluid:

∂vi

∂xi
= 0, (1)

1
φ

∂vi

∂t
+

1
φ2

∂vjvi

∂xj
= − 1

ρ0

∂p

∂xi
+ Fgi − ν

K
vi +

∂

∂xj

(
2
ν

φ
ε̇ij

)
, (2)

∂

∂t
[φcf + (1 − φ)cs] T + cf

∂vjT

∂xj
=

∂

∂xj

(
λe

∂T

∂xj

)
, (3)

φ
∂C

∂t
+

∂vjC

∂xj
=

∂

∂xj

(
D

∂C

∂xj

)
. (4)

The parameters, used above are: vi volume-averaged velocity, xi the i-th
coordinate, φ porosity, t time, ρ density, ν kinematic viscosity, ∂p/∂xi the
pressure gradient, gi gravity and K permeability of porous media. F is the
normalized density difference function and is given as: F = (ρ − ρ0)/ρ0 =
− [βT (T − T0) + βC(C − C0)]. Furthermore cf = (ρc)f and cs = (ρc)s are the
heat capacities for the fluid and solid phases, respectively, T is temperature, λe the
effective thermal conductivity of the porous media given as λe = φλf +(1−φ)λs,
where λf and λs are thermal conductivities for the fluid and solid phases,
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respectively. In the final equation C stands for concentration, and D for mass
diffusivity. The momentum equation (2) is known as the Brinkman extension of
the classical Darcy equation. The additional Brinkman viscous term (fourth on the
r.h.s.) is analogous to the Laplacian term in the Navier–Stokes equations for pure
fluid and accounts for viscous resistance or viscous drag force exerted by the solid
phase on the flowing fluid at their contact surfaces.

3 Boundary Element Method

In the present study the extension of the classical Boundary Element Method
(BEM) is used, the so called Boundary Domain Integral Method (BDIM) [9, 10].
Because in the obtained set of integral equations boundary and domain integrals
are present, the discretization of surface and domain is required.

To use the BDIM the above given general set of equations should first be
modified. Firstly, the modified velocity v′i = vi/φ is introduced. The material
properties, kinematic viscosity ν in the momentum equation, thermal diffusivity
aP in the energy equation and mass diffusivity D in the species equation are
divided into a constant and variable part as follows: ν = ν̄ + ν̃, aP = āP + ãP and
D = D̄ + D̃. The momentum, energy and species equation can now be written as:

∂v′i
∂t

+
∂v′jv

′
i

∂xj
= − 1

ρ0

∂p

∂xi
+ Fgi − νφ

K
v′i + ν̄

∂2v′i
∂xj∂xj

+
∂

∂xj
(2ν̃ε̇ij) , (5)

σ

φ

∂T

∂t
+

∂v′jT
∂xj

=
āP
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where ε̇ij represents the strain rate tensor ε̇ij = 1/2(∂v′i/∂xj + ∂v′j/∂xi) and σ
is the heat capacity ratio given as σ = φ + (1 + φ)cs/cf .

3.1 Velocity-vorticity formulation

In the next step the above-stated governing equations are transformed by the use
of velocity-vorticity formulation (VVF), consequently the computational scheme
is partitioned into its kinematic and kinetic parts [9].

In the present study a two-dimensional problem is considered, so all subsequent
equations will be written for case of planar geometry.

The vorticity vector, which represents the curl of the velocity field ω =
eij∂vj/∂xi is introduced, where eij is the unit permutation tensor. The kinematic
part is represented by the elliptic velocity vector equation:

∂2v′i
∂xj∂xj

+ eij
∂ω′

∂xj
= 0, (8)
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where ω′ is the modified vorticity ω′ = ω/φ. The kinetics is governed by the
vorticity, energy and species transport equation. The vorticity transport equation is
obtained as a curl of the Brinkman momentum equation (5):
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where fj is the contribution arising on account of nonlinear material properties.
Equations (6), (7), (8) and (9) represent the leading non-linear set of equations, to
which the weighted residual technique has to be applied. Integral representation of
kinematic equation is:
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where the parameter c(ξ) denotes coefficient related to the position of the source
point. bi stands for the pseudo-body source term and is in this case bi =
eij∂ω′/∂xj , u∗ is the elliptic Laplace fundamental solution and q∗ is its normal
derivative e.g. q∗ = ∂u∗/∂n. The fundamental solution u∗ for the case of planar
geometry is given by the expression:
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1
2π

ln
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1

r(ξ, s)

)
, (11)

where r is the vector from the source point ξ to the reference field point s.
With further mathematical reformulations and use of Gauss-divergence theorem
following integral formulation for kinematics can be written:
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where q∗t is the tangential derivative of the fundamental solution q∗t = ∂u∗/∂t.
The formulations for the vorticity, temperature and concentration can generally be
written as a non-homogeneous elliptic diffusion-convective equation [10]:

ō
∂2u
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− ∂v̄′ju

∂xj
− u

∆t
+ bi = 0, (13)

where u is taken as vorticity ω′, temperature T and concentration C, respectively,
ō is defined by considering the conservation laws and constitutive hypothesis, and
bi stands for the pseudo-body source term. Since the fundamental solution exists
only for steady diffusion-convective PDE with constant coefficients, the velocity
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field is decomposed into an average constant vector v̄i and perturbated vector ṽi,
such that vi = v̄i + ṽi. Thus the following integral formulation can be obtained:
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where u∗ is the elliptic diffusion-convective fundamental solution of steady
diffusion-convective PDE, in the form of:
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for the plane case. Parameter µ is defined as µ =
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order 0, and r is the magnitude of the vector from the source to the reference
point, i.e. r = |xi(ξ)− xi(s)|. The following integral representations for vorticity,
temperature and concentration kinetics are obtained according to equation (14):
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where U∗
ω, U∗

T and U∗
C are modified elliptic diffusion-convective solutions defined

as U∗
ω = ν̄u∗ in the momentum equation, U∗

T = āP /φu∗ in the energy equation
and U∗

C = D̄/φu∗ in the species equation.
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For approximate numerical solution, the integral equations have to be written
in a dicretized manner, where the integrals over boundary and domain are
approximated by the sum of integrals over all boundary elements and internal
cells, respectively. The variation of field functions within each boundary
element or internal cell is approximated by the use of appropriate interpolation
polynomials [11]. The system of discretized equations is solved by coupling those
kinetic and kinematic equations and considering the corresponding boundary and
initial conditions. Since the implicit set of equations is written simultaneously
for all boundary and internal nodes, this procedure results in a very large
and fully-populated system matrix, influenced by diffusion and convection. The
consequence of this approach is a very stable and accurate numerical scheme with
substantial computer time and memory demands. The subdomain technique is used
to improve the economics of the computation, where the entire computational
domain is partitioned into subdomains to which the same described numerical
procedure can be applied [9].

4 Test example

The obtained numerical scheme is discussed on the problem described in section 2
of this paper. The governing parameters of a problem are:

- porosity, φ,
- Darcy number Da, given with the expression Da = K/φH2

- aspect ratio A = D/H
- modified (porous) thermal Rayleigh number Ra = KgβT ∆TH/aP ν,
- Lewis number Le = aP /D,
- buoyancy ratio N = βC∆C/βT ∆T .

In the above notations ∆T and ∆C are temperature and concentration differences
between the upper and bottom boundaries, and D is the mass diffusivity. For aspect
ratio A = 1, a non-uniform computational mesh 20×20 subdomains was used with
a ratio between the longest and shortest elements of r = 6, and for A = 2, A = 4
20 × 10 subdomains were used. Time-steps ranging from ∆t = 10−16 (steady
state) to ∆t = 10−4 were employed, and the convergence criterion is determined
as ε = 5 × 10−6 for all cases.

The described numerical model was tested for different values of governing
parameters (Ra, Da, Le and N ). It should be noted that, in the case of N = 0
the buoyancy effect is due entirely to temperature gradients. The mass transfer
in this case is due to temperature field and concentration differences between the
horizontal boundaries. In the case of positive values for buoyancy ratio (N > 0),
the thermal and solutal buoyancy forces aid each other (aiding convection) and for
negative values of buoyancy ratio (N < 0) the solutal and thermal effects have
opposite tendencies (opposing convection).

The results for total heat and mass transfer through the horizontal layer are given
by the values of Nusselt and Sherwood numbers defined as:

Nu = −
∫ 1

0

(
∂T

∂x
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x=0

dy, Sh = −
∫ 1

0

(
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)
x=0

dy. (19)
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Table 1: Comparison of results with numerical experiments reported in the
literature for A = 1.

Nu Sh

This Study Ref. [7] This study Ref. [7]

Ra = 600, Le = 1, N = 0 7.01 6.6 7.01 -

Ra = 100, Le = 10, N = 0.2 2.48 2.4 10.00 -

Ra = 100, Le = 10, N = 0.2 2.50 2.5 14.8 15

The validation of the numerical code was accomplished by comparison with some
published numerical experiments. In table 1 some results for A = 1, Da = 10−5,
different values of Rayleigh, Lewis numbers and buoyancy ratio are presented.

The values of overall heat and mass transfer are compared with the published
results, where the numerical calculations based on the Darcy model are
obtained [7]. The first result is for the case of Ra = 600, Le = 1 and N = 0,
which means, that only the thermal buoyancy force is present. The overall heat
and mass transfer, which are presented by Nu and Sh are identical. The other two
cases are for Ra = 100, N = 0.2 and Le = 10, Le = 30. In this case, both
the thermal and solutal buoyancy forces are present and aid each other. The values
of Sherwood numbers are now higher than those of the Nusselt numbers, which
is a result of higher Lewis number. The presented result are in agreement with
published ones. Table 2 presents the influence of the Darcy number on the overall
heat and mass transfer. The values of the governing parameters for this case are:
aspect ratio A = 4, Rayleigh number Ra = 300, Lewis number Le = 0.1 and
buoyancy ration N = −2. The negative sign for buoyancy ratio indicates, that the
thermal and solutal buoyancy forces oppose to each other.

Table 2: Nu and Sh numbers for different values of Da and A = 4, Ra = 300,
Le = 0.1, N = −2.

Da 10−1 10−2 10−3 10−4 10−5

Nu 1.00 2.05 2.82 3.12 3.50

Sh 1.00 1.02 1.04 1.05 1.06

From the obtained results it is evident, that with any decrease in the Darcy
number the vaule of the Nusselt number increases. In cases of small Lewis numbers
Le → 0 the values of Sherwood numbers tend to unity (Sh → 1), which implies,
that the mass transfer is dominated by diffusion. The same conclusions are also
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published in [1]. In the case of Da = 10−1 the values of Nu and Sh are equal
to 1, which means that heat and mass transfer are governed by diffusion. The
Rayleigh number in this case is beyond the critical value required for the beginning
of convective motion. The relationship between the critical Rayleigh number and
the Darcy number is given in [1] and states that the values of the critical Rayleigh
number increase in line with the Darcy number.

The velocity, temperature and concentration fields for Ra = 2500, Da = 10−2,
Le = 10, N = 0, A = 2 are presented in fig. 2.

Figure 2: Streamlines, isotherms and isoconcentrations in a horizontal layer for
Ra = 2500, Da = 10−2, Le = 10, N = 0, A = 2.

The buoyancy effect in this case is due entirely to temperature gradients, so the
concentration field is a result of the flow driven by the temperature gradients and
the imposed concentration difference between the upper and bottom boundaries.
From the fig. 2. it is evident that the flow in the horizontal layer with A > 1
becomes multi-cellular (in the case of A = 2 there are 2 cells). The flow consists
of rising hot fluid in the centre of the layer and colder fluid sinking along the
vertical walls. In the centre of the domain higher solute concentration is found than
along the adiabatic and impermeable side walls. Thin temperature and composition
boundary layers are evident at the top and bottom walls.
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5 Conclusion

A numerical study of double-diffusive natural convection in a horizontal porous
layer, saturated with the Newtonian and incompressible fluid is presented. For
the solution of governing equations the Boundary Domain Integral Method, an
extension of the classical Boundary Element Method, was used. The modified
Navier–Stokes equations have been used to describe the fluid motion in porous
media. The general set of equations is transformed with use of velocity-vorticity
formulation, which consequently separates the computational scheme into a
kinematic and kinetic part. The results for different values of governing parameters
are obtained and compared to some published studies.
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