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Abstract

The problem of unsteady fluid flow in a channel with a sharp contraction is stud-
ied numerically. An incompressible and full compressible Navier–Stokes set of
equations is considered. The thermal energy equation is written in its most general
form including the Rayleigh and reversible expansion rate terms. Flows for differ-
ent Reynolds number values are studied in the context of unsteadiness of the flow.
The influence of the additional nonlinearity due to compressibility of the fluid,
dissipation and reversible rate of work are analyzed. Also, their influence on the
stability of the flow is considered.

The boundary element numerical model is used, with the velocity vorticity for-
mulation of the Navier–Stokes equations. The pressure field is evaluated from the
pressure Poisson equation. Material properties are taken to be for the ideal fluid
(air), and assumed to be pressure and temperature dependent.

1 Introduction

There are a large variety of forced-convection processes for gases flowing in closed
conduits which can be reasonably approximated as constant pressure processes.
In this study we examine the thermal energy equation for a flow which is nei-
ther constant density nor constant pressure. Here we consider the unsteadiness of
compressible viscous flow in channels with sharp contractions. Due to sharp dis-
continuity in the channel geometry the thermal energy equation is written in its
expanded form with the terms such as the rate of reversible work and the rate of
irreversible or dissipation work. The coupled momentum and thermal energy trans-
port equations, specially due to mentioned rate of work terms, drastically increased
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the nonlinearity of the governing set of equations, and as a consequence decreased
the stability of the numerical algorithm.

The unsteadiness of force convection flow are considered in a channel of aspect
ratio A = H/L = 8, with height H and length L, with one and two sharp con-
tractions. The flow behavior is computed for the Reynolds number values Re =
20, 200 and 2000. For the Reynolds number value Re = 20 the steady flow exists,
while for the Reynolds number values Re = 200 and 2000 the flow is unsteady
and oscillating with the transition to turbulent flow situation.

2 Governing equations for the primitive variables formulation

The field functions of interest are velocity vector field vi, scalar pressure field p,
temperature field T and the field of mass density ρ, so that the mass, momentum
and energy equations are given by the following set of nonlinear equations
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in the Cartesian frame xi, where c denotes changeable isobaric specific heat capac-
ity per unit volume, c = cp ρ, t is time, gi is gravitational acceleration vector, while
β is a volume coefficient of thermal expansion and Φ is the Rayleigh viscous dissi-
pation function. Because of the analytical reasons to develop the velocity-vorticity
formulation of the governing equations, the momentum equation is given in the
second extended form. The following forms of the linear constitutive models for
compressible viscous shear fluid are considered, such as the Newton and Fourier
law of momentum and thermal energy diffusion

τij = 2ηε̇ij − 2
3
ηDδij , qi = −k
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, (4)

where D = div 	v = ε̇ii represents the divergence of the velocity field, and the
Rayleigh dissipation function may be stated as
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Representing the material properties of the fluid the dynamic viscosity η, heat
conductivity k, the specific heat per unit volume c, and the mass density ρ, respec-
tively, as a sum of a constant and variable part, e.g. η = ηo + η̃, k = ko + k̃,
c = co + c̃, and ρ = ρo + ρ̃, the momentum and energy eqs. (2) and (3) may be
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written in analogy to the basic conservation equations formulated for the constant
material properties
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where the pseudo body force term 	fm and pseudo heat source term Sm are intro-
duced into the momentum eq. (6) and into energy eq. (7) respectively, capturing the
variable material property effects, and the nonlinear effects due to rate of reversible
and irreversible work, and given by expressions, e.g. for plane flow problems
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while the pseudo heat source term is given by an expression
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in which the kinematic viscosity is νo = ηo/ρo, the heat diffusivity ao = ko/co

and the inertia acceleration vector is 	a = D	v/Dt.

3 Governing equations for the velocity-vorticity formulation

The kinematics of the flow motion may be obtained by applying the curl operator
to vorticity definition [2]:

	∇× 	ω = 	∇× (	∇× 	v) = 	∇(	∇ · 	v) − ∆	v, (10)

and by using the continuity eq. (1), the following vector elliptic Poisson equation
for the velocity vector is derived

�	v+	∇×	ω−	∇D=0. (11)

The kinetics of the flow representing by the vorticity transport equation is
obtained by applying the curl differential operator to the both sides of eq. (6),
rendering the following statement for the two-dimensional plane flow written in
Cartesian tensor notation form as
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To derive the pressure equation, depending on known velocity field, vorticity
field and material functions, the divergence of momentum equation should be cal-
culated, resulting in the elliptic Poisson pressure equation

�p − 	∇ · 	fp = 0, (13)
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where the pressure force term 	fp is for the planar flow cases
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i . (14)

The Neumann boundary conditions for pressure equation may be determined for
the whole solution domain and the following relation is valid

∂p

∂n
= 	fp ·	n on Γ. (15)

Due to the variable material property terms, and rate of reversible and irre-
versible work acting as additional temperature, pressure and velocity field depen-
dent source terms, the vorticity, thermal energy, and pressure equations are cou-
pled, making the numerical solution procedure of this highly nonlinear coupled set
of equations very severe. Already, the vorticity transport equation as itself is highly
nonlinear partial differential equation due to the inherent nonlinearity caused by
the compatibility and restriction conditions among velocity, vorticity and dilata-
tion fields. The dilatation and the vortical part of the flow, D and 	ω field functions
respectively, and all other nonlinear terms have to be underrelaxed to achieve con-
vergence of the numerical solution procedure.

4 Boundary-domain integral equations

The singular boundary-domain integral representation for the velocity vector can
be formulated by using the Green theorems for scalar functions or weighting resid-
uals technique rendering the following vector integral formulation [1–10]), e.g. the
plane two-dimensional kinematics is given by two scalar equations as follows
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or in the form of integral vector formulation for the general flow situation
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Considering the vorticity kinetics in an integral representation one has to take
into account parabolic diffusion convection character of the vorticity transport
equation. With the use of the linear parabolic diffusion differential operator, the
following integral formulation can be written
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in which a constant variation of all field and material functions within the individ-
ual time increment ∆t = tF − tF−1 is assumed [11], e.g. the values at t = tF are

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

182  Boundary Elements and Other Mesh Reduction Methods XXIX



considered for each time step, and where vn, gt and fm
t are the normal velocity,

and the tangential gravity and nonlinear material source components, respectively,
e.g. vn = 	v · 	n, gt = 	g · 	t = −eijginj and fm

t = 	fm · 	t = −eijf
m
i nj .

The pressure eq. (13) is an elliptic Poisson equation, and therefore employing
again the linear elliptic Laplace differential operator the following form of the
pressure integral equation is obtained

c (ξ) p (ξ) +
∫

Γ

pq�dΓ =
∫

Ω

fpiq
�
i dΩ, (19)

where the vector 	fp is given by eq. (14).
The integral representation of the nonlinear heat energy transport equation is

derived considering the linear parabolic diffusion differential operator, therefore
the following integral representation for the thermal energy kinetics can be evalu-
ated
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5 Numerical example

Incompressible and compressible fluid flow circumstances in channels with one
or two contractions are studied. Very coarse mesh is applied first, consisting of
168 quadratic boundary elements and 888 quadratic internal cells with 3721 total
nodes, thus the numerical simulation results are more or less of only qualitative
value to show the applicability of the presented numerical algorithm. The solution
domain is shown in Figure 1.

The ideal gas (air) is chosen as a working fluid with the inflow temperature
To = 600K and pressure po = 101325Pa, the conduit walls are adiabatic, while
at the outflow the convective temperature boundary conditions are prescribed. The
flow field at Reynolds number values Re = 20, 200, and 2000 are simulated. In
presented cases the Pr number value is assumed to remain constant (0.71), while
the temperature dependence of the viscosity is given by the Sutherland’s model

η(T )
η∗ =

(
T

T ∗

) 3
2 T ∗ + S

T + S
, (21)

and the heat conductivity is expressed as

k(T ) =
η(T )cp

Pr
(22)

with T ∗ = 273K , S = 110.5K , η∗ = 1.68 · 10−5kg/m/s, cp = κR/(κ − 1),
κ = 1.4 and R = 287.0 J/kgK . The influence of temperature on cp is neglected.
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Figure 1: Numerical simulation flow domain: channel with one and two sharp con-
tractions.

The steady state numerical simulation results for the velocity vector, pressure
and temperature contours are presented in Figure 2 for Re = 20 for the compress-
ible coupled momentum energy transport.

Figure 2: Numerical simulation results for Re = 20 for the compressible coupled
momentum energy transport: velocity vector, pressure, temperature and
vorticity contours.

It is evident that the flow is basically incompressible and that all nonlinear
effects, such as the irreversible and reversible rate of work, are negligible and
localized only on the motion around sharp edges of the contraction. For the qual-
itative purposes, for this very course mesh, Tmin = 584K and Tmax = 612K .
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The numerical solution results for the compressible and incompressible cases in
general coincide.

For the Re = 200 flow case the steady state do not exist and the flow oscillates
with strong separation of the boundary layer. The unsteady state numerical sim-
ulation results for the compressible coupled momentum energy transport for the
velocity vector, pressure and temperature contours are presented in Figure 3 for
Re = 200.

Figure 3: Numerical simulation results for Re = 200 for the compressible cou-
pled momentum energy transport: velocity vector vx, vy , temperature
and pressure contours.

Again the compressibility and all other nonlinear effects in momentum and
thermal energy processes are negligible in fluid flow domain and only localized
on the areas around sharp edges of the contraction. For the qualitative purposes
Tmin = 379K and Tmax = 666K , thus the nonlinear effects are more severe but
still very localized. The increased nonlinearity decrease the stability of the numer-
ical procedure, very small time increment �t = 10−4 has to be applied.

The flow field at Reynolds number value Re = 2000 was simulated next with
the time increment �t = 10−5. Figure 4 shows the velocity contours, vorticity
magnitude and pressure contours at a chosen time instant for the incompressible
uncoupled transport case. Time traces of velocity components, vorticity and pres-
sure a location on the centerline of the channel is plotted in Figure 5.
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Figure 4: Numerical simulation results for Re = 2000 for the incompressible
uncoupled flow case: horizontal velocity, vertical velocity, vorticity and
pressure contours a t = 4 · 10−3.

6 Conclusions

In this work the boundary element integral approach to the solution of incom-
pressible and compressible fluid motion in channels with sharp contractions is
presented. The derived numerical model is characterized by decomposition of flow
into its kinematic, vorticity kinetics, thermal energy kinetics, and pressure formu-
lation a result of the velocity-vorticity formulation of the Navier–Stokes equation
for a compressible fluid. The described numerical scheme leads to strong cou-
pling between velocity, vorticity, temperature, pressure and mass density fields.
The application of the elliptic Laplace and parabolic diffusion fundamental solu-
tions in the derivation of integral representations ensures an accurate computation
of the flow field variables.

The computed test examples confirm the applicability of BEM based numeri-
cal scheme also for a highly nonlinear transport phenomena, what compressible
coupled momentum and thermal energy convection flow certainly is. The transient
simulation results show development of the flow field with time caused by the com-
pressible and viscous effects, as represented by the local expansion and vorticity
field functions, respectively. The BEM mesh applied in the paper is appropriate
to describe the compressible coupled momentum and thermal energy transport at
Reynolds number values Re = 20 and Re = 200, but to coarse for transport phe-
nomena at Re = 2000. The nonlinearities in thermal energy equation are to severe,
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Figure 5: Numerical simulation results for Re = 2000 for the incompressible
uncoupled flow case: time traces of horizontal velocity, vertical veloc-
ity, vorticity and pressure at x = 0.0403, y = 0.005.

for the mesh applied, and only compressible and incompressible uncoupled cases
are simulated successfully at Re = 2000.

Results for the case of two contractions as well as further numerical analyses
of the transition from periodic to turbulent flow circumstances will be presented at
the conference.
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