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Abstract  

In an earlier study, a boundary element methodology was developed to obtain 
numerically stable and convergent results for the concentration distribution and 
flow of a water reservoir. In the process to apply the boundary element method 
to the flow analysis around a machine that supplies dissolved oxygen (DO), we 
realised that the divergence and accuracy of the very delicate flow were sensitive 
to the mesh (domain) and boundary discretisation. In other words, it seemed 
difficult to determine the appropriate lengths of the mesh (domain) and boundary 
discretisation for obtaining stability and convergence in the computational 
analysis. In this paper, a new meshless method is presented, which overcomes 
the difficulties of the boundary element method described above. The method is 
based on the idea of mesh-free radial basis functions (RBFs), which is a 
collocation method. Referring to the velocity vectors of the water flow calculated 
by the weighted finite difference method (WFDM) and the finite element method 
(FEM) and observed in the model simulation of a water reservoir constructed in 
the sanitary and environmental engineering laboratory of Kyushu Sangyo 
University, the effect and accuracy of the alternative meshless method were 
estimated. 
Keywords: flow and concentration in water reservoirs, meshless method, 
weighted finite difference method, finite element method, observed velocity in 
model simulation of water reservoir. 

1 Introduction  

The poor-oxygen layer, which is short of or lacking in dissolved oxygen (DO), 
sometimes results in pollution of the water in a reservoir. An attempt was made 
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to ameliorate the concentration of oxygen in the lower layer of the reservoir by 
using a machine that supplies DO (Kanoh et al. [1]). In order to numerically 
confirm the efficiency of the improvement in DO, we applied a meshless method 
to represent and calculate the slow but very delicate flow caused by the DO-
supplying machine. For this purpose, two techniques were used: (1) the first is 
the penalty method, in which the pressure terms are eliminated in the 
Navier–Stokes equations for the meshless method; (2) the second is to identify 
the boundary conditions for the velocity and concentration against the vertical 
wall or the bottom and on the free surface. 

2 Governing equations  

The three equations, which are continuous, Navier–Stokes (N–S) and 
convective-diffusion equations, govern the flow in the flow domains of a water 
reservoir. In the vertical (x1, x2) plane, as illustrated in Figure 1, these equations 
are shown as follows: 
 

 
 (1)

 
 (21)

 

(22)

 
 
 
 

 
 

ρ = aT + b  

(3)

(4)

where x1 and x2 are the horizontal and vertical directions, u1 and u2 describe the 
velocities of the x1 and x2 directions, P is the pressure, g is the gravity 
acceleration, ν is the kinematic viscosity, T is the water temperature, and D is the 
diffusion coefficient. Here, the density ρ is connected to the water temperature T, 
as written in Equation (4), with the coefficients a and b. The water temperature 
T is compatible to the concentration of dissolved oxygen (DO) in case it is 
necessary to calculate the DO or other values. 
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Figure 1: The entire domain of a water reservoir. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The domain around a DO-supplying machine in a reservoir. 

 

3 Application of the meshless method 

3.1 Meshless method for flow and concentration analysis 

We deal with the flow and concentration analysis in the water reservoir as shown 
in Figures 1 and 2, and try to apply the meshless method to the problem. The 
meshless method is based on the idea of the mesh-free RBF collocation method 
(e.g., Divo et al. [2]). The penalty method was used so that the pressure terms 
would be eliminated in the N–S equations and the difficulty of the pressure 
boundary conditions would be avoided in the meshless method. 
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3.2 Meshless method formulation 

3.2.1 Application of the penalty method to N–S equations 
In order to eliminate the pressure terms in the N–S equations and avoid the 
difficulty of the pressure boundary conditions, the penalty method is introduced, 
and the following equations are obtained as described below 

 
, 1,2 2,2 , , 1,2 2,2 ,( ) ( ) 0j i j j i j ju u u u u uλ δ ν⋅ − + ⋅ − + =  

 
i, j = 1, 2 (5)

where λ means Re・ K/ρ,  Re is the Reynolds number, and K describes the 
coefficient of the penalty method (Kanoh et al. [1]). 

3.2.2 Simultaneous equations for the meshless method  
Substituting u1 and u2 at time (t-∆t) into the above Equation (5), the following 
expression is obtained: 

  
(61)

 
 

(62)

The global expansion function Xj (= (r2+c2)−1/2) is employed here so that the 
unknowns (u1, u2, and T) at time (t) can be developed for the mesh-free RBF 
collocation method, where r equals {(x-xj)+(y-yj)}1/2 and c is the constant. The 
unknown values u1, u2, and T are expressed as Equation (7) using the global 
expansion function Xj.  
 

u1 = αj Xj = αj /(r2+c2)1/2 

 

u2 = βj Xj = βj /(r2+c2)1/2 

 

T  = γj Xj = γj /(r2+c2)1/2 
 
The simultaneous equations for calculating the above unknowns (αj, βj, and γj) in 
the steady state are obtained as Equation (8).  
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Substituting the obtained values of αj, βj, and γj into Equation (7), the values of 
three unknowns (u1, u2, and T) in the steady state can be calculated using the 
meshless method. 

3.3 Boundary conditions 

The boundary conditions for the free surface, the bottom and the vertical wall 
boundary have been previously proposed for BEM and WFDM in the flow 
region (Kanoh et al. [1]). Regarding the boundary conditions for flow analysis by 
our meshless method, the outline is as follows: (1) the velocities that exist in the 
normal and tangential directions at the wall or on the bottom are zero; (2) the 
pressure on the free surface is defined as zero. The pressure that is defined on the 
inside point neighbouring the wall or bottom is calculated as shown below: 
 

         Pinside = Poutside − ρ·ν· un-1 /(∆n) ,                                 (9) 
 
where Pinside and Poutside are the pressures on the inside and outside points, 
respectively, and un-1 is the velocity value on the point that exists in the length of 
∆n to the boundary. This pressure boundary condition requires that the meshless 
method have the points existing inside the wall or bottom. 

4 Results and discussion 

The numerical results of the meshless method, the finite element method (FEM), 
and the weighted finite difference method (WFDM) are compared and discussed 
in this section. The two kinds of flow analysis calculated by these three methods 
are described here. Namely, the first analysis is the flow around a DO-supplying 
machine in a water reservoir, and the second is the flow analysis of an entire 
domain of the water reservoir.  

4.1 Flow analysis around a DO-supplying machine in a water reservoir 

As described above, in the process to apply the boundary element method to the 
flow analysis around the DO-supplying machine, we realised that the divergence 
and accuracy of the very delicate flow were sensitive to the mesh (domain) and 
boundary discretisation. In other words, it is difficult to determine the 
appropriate lengths of the mesh (domain) and boundary discretisation for 
obtaining convergence and stability in the computational analysis. The numerical 
results of the flow around the DO-supplying machine certified that our new 
meshless method overcame the difficulties of the boundary element method 
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Figure 3: Velocity vectors using meshless method around a DO-supplying 
machine. 

 
 
 
 
 
 
 
 
 

Figure 4: Velocity vectors using FEM around a DO-supplying machine. 

 
 
 
 
 
 
 
 
 

Figure 5: Velocity vectors using WFDM around a DO-supplying machine. 

described above. It was reported in our previous work that the poor oxygen 
concentration frequently yielded a bad odour and dissolved heavy metals in the 
lower water layer of the B water reservoir. We were successful at improving the 
poor oxygen concentration in the lower layer of the B water reservoir using the 
DO-supplying machine. In order to economically improve the poor oxygen 
concentration of other water reservoirs, it seemed necessary to appropriately 
determine the capacity and the number of the DO-supplying machines required 
for improving the poor oxygen. For that purpose, we calculated the flow around 
a DO-supplying machine in a water reservoir by using the three methods 
described in this paper. 
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4.1.1 Meshless method calculation of the flow around the machine 
Figure 3 illustrates the flow velocity vector distribution around a DO-supplying 
machine in a water reservoir calculated by the meshless method, in which the 
number of the points in the meshless method is 651 and the three values of λ, C, 
and ν are 1000.0, 1.0, and 0.001, respectively. The boundary element method 
could not yield stable and convergent results to the flow analysis around the 
machine to supply DO; on the other hand, the stability and convergence of the 
flow analysis using the meshless method seemed satisfactory. 

4.1.2 FEM calculation of the flow around the machine 
Figure 4 illustrates the flow velocity vector distribution around a DO-supplying 
machine in a water reservoir calculated by the finite element method, in which 
the number of the elements in the FEM is 300 and the two values of λ and ν are 
1000.0 and 0.001, respectively. The penalty method was also introduced so that 
the pressure terms would be eliminated in the Navier–Stokes equations and the 
difficulty of the pressure boundary conditions could be avoided in the finite 
element method as well as in the meshless method. The kinds of flow velocity 
vector distributions around the DO-supplying machine calculated by both the 
finite element method and the meshless method closely resemble each other. The 
stability and convergence of the flow analysis using the finite element method 
also seemed satisfactory. 

4.1.3 WFDM calculation of the flow around the machine 
Figure 5 illustrates the flow velocity vector distribution around a DO-supplying 
machine in a water reservoir calculated by the weighted finite difference method, 
in which the number of meshes in the WFDM is 4750 and the value of ν is 
0.0000015. We consider that the flow velocity vectors around the DO-supplying 
machine calculated by the WFDM are reasonable, since the WFDM yielded very 
similar solutions to the true results of several flow problems that were observed 
in the simulation models constructed in the sanitary and environmental 
engineering laboratory of Kyushu Sangyo University. 

4.1.4 Domain discretisation of the four methods around a DO-supplying 
machine 

Figure 6 shows the domain discretisation of the four methods around a DO-
supplying machine. Comparing the node distribution of the meshless method 
with the boundary element distribution of the BEM around the DO-supplying 
machine, we can see that both the number of the points of the meshless method 
and the number of the boundary elements of the BEM closely resemble each 
other. As described above, the BEM could not give stability to the flow analysis 
around the DO-supplying machine; on the other hand, the stability of our 
meshless method was satisfactory. Namely, our meshless method overcame the 
difficulty of the BEM to determine the appropriate combinations of the lengths 
of the domain and boundary discretisation for obtaining the stability in the 
computational analysis. Comparing the node distribution of the meshless method 
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with those of the FEM and WFDM in Figure 6(a), (c), and (d), we can see that 
the three sets of the number of the points of the meshless method, the finite 
elements of the FEM, and the meshes of the WFDM are almost identical. 
Moreover, all three methods can give stability and convergence to the flow 
analysis around the DO-supplying machine. 
 
 
     

(a) Node distribution of the meshless method around a DO-supplying machine. 

(b) Boundary element distribution of BEM around a DO-supplying machine. 

(c) Element distribution of FEM around a DO-supplying machine. 

(d) Mesh distribution of WFDM around a DO-supplying machine. 

Figure 6: Domain discretisation of the four methods around a DO-supplying 
machine.  
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4.2 Flow analysis of the entire domain of a water reservoir 

4.2.1 Meshless method calculation of the entire domain 
Figure 7 illustrates the velocity vectors of the entire domain in the B water 
reservoir calculated using the meshless method, in which the number of the 
points in the meshless method is 801 and the three values of λ, C, and ν are 
1000.0, 0.1, and 0.001, respectively. We consider that the stability and 
convergence of the meshless method for this problem are satisfactory. 
 
 
 
 
 
 
 
 

Figure 7: Velocity vectors using meshless method in an entire reservoir. 

 
 
 
 
 
 
 
 

Figure 8: Velocity vectors using FEM in an entire reservoir.  

 
 
 
 
 
 
 

Figure 9: Velocity vectors using WFDM in an entire reservoir. 

 
 
 
 
 
 
 

Figure 10: Observed velocity vectors in a model simulation of a reservoir. 
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4.2.2 Finite element method calculation of the whole domain 
Figure 8 shows the velocity vectors of the entire domain in the B water reservoir 
calculated using the finite element method, in which the number of the elements 
in the FEM is 800 and the two values of λ and ν are 1000.0 and 0.001, 
respectively. We consider that the stability and convergence of the FEM for this 
problem are also satisfactory. 

4.2.3 Weighted finite difference method calculation of the whole domain 
Figure 9 illustrates the velocity vectors of the entire domain in the B water 
reservoir calculated using the weighted finite difference method, in which the 
number of meshes in the WFDM is 2905 and the value of ν is 0.000001. We 
consider that the divergence and accuracy of the WFDM for this problem are 
satisfactory enough. Figure 10 illustrates the velocity vectors of the entire 
domain in the B water reservoir observed in the hydro-model constructed in the 
sanitary and environmental engineering laboratory of Kyushu Sangyo 
University. Comparing the observed values with the calculated results using the 
WFDM, we could see that the WFDM could yield a very similar solution to the 
actual results of the problem. 

5 Conclusion 

In order to overcome the fact that the boundary element method could not give 
stability and convergence to the flow analysis around the DO-supplying 
machine, we applied a meshless method to analyse the problem. The meshless 
method could calculate two kinds of flow; the first is that caused by the DO-
supplying machine, and the second is the flow distribution of the entire domain 
in the B water. The stability and convergence of the two kinds of flow analysis 
using the meshless method seemed satisfactory. Comparing the observed values 
with the calculated results using the WFDM, we can see that the WFDM can 
yield a very similar solution to the actual results of the flow analysis of the entire 
domain in the B water reservoir. By investigating the methodology, the boundary 
conditions, and other techniques of the WFDM, we intend to develop a meshless 
method for the flow and concentration analysis in a water reservoir. 
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