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Abstract

Flow of an incompressible viscous fluid is considered. The velocity-vorticity
formulation of the Navier–Stokes equations is used. The kinematics equation is
solved for boundary vorticity values using the Boit-Savart law. Solution of the
kinetics equation for the domain values is obtained by employing a macro element
approach. Using macro elements enables simulations on dense meshes, since it
substantially reduces the algorithm’s memory requirements.

The developed numerical algorithm has been used to simulate laminar flow over
a square cylinder in channel. Low Reynolds number steady state flow simulation
as well as transient simulation at higher Reynolds numbers has been investigated.
The results have been analysed in terms of velocity, vorticity and pressure field
distributions in the wake of the cylinder.

1 Introduction

Flows past bluff bodies are an interesting topic amongst engineers and researchers.
A square cylinder is a basic example of such flows, its industrial applicability
ranging from wind induced motion to turbulent sound generation. In general flows
past bluff bodies exhibit complex phenomena such as separation, reattachment or
vortex shedding.

The numerical benchmark for laminar incompressible flow over a square
cylinder was made by Breuer et al. [1] using lattice Boltzmann and finite
volume methods. Recently turbulent flow over a square cylinder was considered
by Sohankar [2] using the Large eddy simulation approach. Flow as well as
heat transfer was considered by De and Dalal [3] for a study of a natural
convection around a headed square cylinder in an enclosure. Ozgoren [4] studied
experimentally the flow structure in the downstream of square and circular
cylinders.
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We have used the incompressible Navier–Stokes equations written in velocity -
vorticity formulation to solve flow past a square cylinder. In order to decrease the
computer storage requirements of BEM, wavelet compression technique was used
by Ravnik et al. [5]. In this paper we present results of an alternative approach - the
equations were solved by the macro element Boundary Element Method (BEM).
The derived equations, the numerical procedure and the results are shown below.

2 The Navier–Stokes equations

The analytical description of motion of a continuous incompressible and
isothermal fluid medium is based on conservation of mass and momentum. The
primitive field functions of interest are velocity vector field �v(�r, t) and scalar
pressure field p(�r, t). The dynamics of a viscous fluid flow may be partitioned
into its kinematic and kinetic aspect through the use of derived vector vorticity
field �w(�r, t), obtained as a curl of the compatible velocity field, as follows

ωi = eijk
∂vk

∂xj
,

∂ωj

∂xj
= 0, (1)

which is solenoidal vector by the definition, and eijk is the permutation unit tensor.
By applying a curl to the vorticity definition (1) and using the solenoidal constraint
for the velocity vector �∇ · �v = 0, the following vector elliptic Poisson’s equation
for the velocity vector is obtained

��v + �∇×�ω = 0. (2)

The equation (2) represents the kinematics of an incompressible fluid motion,
expressing the compatibility and restriction conditions between velocity and
vorticity field functions.

The kinetic aspect is governed by the parabolic diffusion convection vorticity
equation, obtained by applying the curl differential operator to the momentum
equation. For the two-dimensional plane flow, the vorticity vector has just one
component, which is perpendicular to the plane of the fluid motion. Thus we obtain
a scalar transport equation for vorticity

Dω

Dt
= ν�ω , (3)

being ν constant kinematic viscosity and D/Dt Stokes substantial derivative.
The vorticity transport equation as itself is highly non-linear partial differential

equation due to the inherent non-linearity caused by the compatibility and
restriction conditions among velocity and vorticity fields, and due to the product
of velocity and vorticity field functions in the convective term.
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To derive the pressure equation, depending on known velocity and vorticity field
functions, the divergence of momentum equation should be considered, resulting
in the elliptic Poisson’s pressure equation

�p − �∇ · �fp = 0, (4)

where the pressure force term �fp is for the planar flow cases

∂p

∂xi
= fpi = −ηeij

∂ω

∂xj
− ρai + ρgi, (5)

in which the dynamic viscosity is η = ρν, and �a = D�v/Dt and �g are the
inertia and gravitational acceleration vectors, respectively. The Neumann boundary
conditions for the pressure equation may be determined for the whole solution
boundary Γ and the following relation is valid

∂p

∂n
= �fp · �n. (6)

3 Boundary-domain integral representations

To apply the boundary element method, we must rewrite the governing differential
equations in integral form. The singular boundary-domain integral representation
for the velocity vector can be formulated by using the Green theorems for scalar
functions or weighting residuals technique rendering the following vector integral
formulation, e.g. the plane two-dimensional kinematics is given by two scalar
equations as follows [4] (Škerget et al. [6])

c (ξ) vi (ξ) +
∫

Γ

vi
∂u�

∂n
dΓ = eij

∫
Γ

vj
∂u�

∂t
dΓ − eij

∫
Ω

ω
∂u�

∂xj
dΩ, (7)

where u� is the elliptic Laplace fundamental solution, ξ the source point and Γ the
boundary of the solution domain Ω.

Considering the vorticity kinetics in an integral representation one has to take
into account parabolic diffusion convection character of the vorticity transport
equation [3]. With the use of the linear parabolic diffusion-convective differential
operator, the following integral formulation can be written (Škerget et al. [7])

c (ξ)ω (ξ) +
∫

Γ

ω
∂U�

∂n
dΓ =

∫
Γ

∂ω

∂n
U�dΓ − 1

ν

∫
Γ

vnωU�dΓ

+
1
ν

∫
Ω

ṽjω
∂U�

∂xj
dΩ + β

∫
Ω

ωF−1U
�dΩ, (8)

where the velocity field is decomposed into an average constant vector vj and a
perturbated one ṽj , such that vj = vj + ṽj , the quantity U� = νu� with u� is now
the fundamental solution of diffusion-convective equation with first order reaction,
and β = 1/ν�t.
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The pressure equation (4) is an elliptic Poisson equation, and therefore
employing again the linear elliptic Laplace differential operator [5] the following
form of the pressure integral equation is obtained (Škerget and Samec [8])

c (ξ) p (ξ) +
∫

Γ

p
∂u�

∂n
dΓ =

∫
Ω

fpi
∂u�

∂xi
dΩ, (9)

where the vector �fp is given by equation (5).

4 Numerical example: flow over a square cylinder

The developed numerical algorithm was used to simulate incompressible laminar
2D flow over a square cylinder. The cylinder was positioned in a centre of a
channel. A parabolic velocity profile was prescribed at the inflow of the channel.
At the channel walls and at the cylinder a no slip boundary condition was applied.
At the outflow boundary normal derivatives of all field functions were set to zero.
Boundary and initial conditions are shown schematically in Figure 1. The flow
configuration was the same as in Camarri and Giannetti [9] with the Reynolds
number valued defined by Re = Dvc/ν. The blockage ratio was β = D/H =
1/8. The length of the flow domain before the cylinder was Li/D = 12 and behind
the cylinder Lo/D = 35.

x

�v = 0

�v = 0

�v = 0

H

y

Li D Lo

vc

Figure 1: Flow configuration, boundary conditions and computational domain, not
in scale.

The simulation was performed on a computational mesh consisting of 4700
Lagrangian 9 node domain cells. The mesh is illustrated in Figure 2.

The flow was simulated for Reynolds number values from Re = 9 to Re = 90.
Flow at Re = 9, Re = 18 and Re = 36 is steady. Steady state simulation was
used to obtained converged results for Re = 9 and Re = 18. At Re = 36 transient
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Figure 2: Computational mesh for the simulation of flow over a square cylinder.
4700 Lagrangian domain cells were used.

simulation was performed, having the steady state Re = 18 results for initial
conditions. A time step of ∆t = 0.1 was used. The simulation ran 140 time steps
to achieve steady state. The contours of vertical and horizontal velocity, vorticity
and pressure are shown in Figure 3 for Re = 9, in Figure 4 for Re = 18 and in
in Figure 5 for Re = 36. One may observe that the recirculation region behind the
cylinder grows with the increasing Reynolds number. The flow speeds up between
the cylinder and the walls of the channel, while it slows in front of and behind the
cylinder. Looking at vorticity contours we observe that the largest vorticity can be
found at the lower left and upper left corner of the cylinder. Vorticity is generated
at solid walls and is transported by diffusion and advection into the flow. Looking
at the pressure field, we notice the high pressure zone in front of the cylinder and
a low pressure zone at the top, bottom and behind the cylinder.

At Reynolds number value Re = 90 the flow becomes unsteady. A time step of
∆t = 0.1 was used. The von Kármán vortex street is formed behind the cylinder,
i.e. clockwise and counter-clockwise vortices are shed from the upper and lower
sides of the cylinder. Figure 6 shows the instantaneous contours of vertical and
horizontal velocity, vorticity and pressure at t = 30.

Breuer et al. [1] and Camarri and Giannetti [9] reported the Strouhal number
(St = fD/vc, f being the vortex-shedding frequency) to be St = 0.135 at
Re = 90. By observing vorticity behind the cylinder at x = 0.968, y = 0
(Figure 7) we were able to measure the vortex shedding frequency f = 0.2. Using
the measure shedding frequency we calculated the Strouhal number St = 0.133,
which is in excellent agreement with the reference results.

5 Conclusions

A macro element boundary element method based method was developed for the
simulation of two-dimensional laminar incompressible viscous fluid flows. The
method was tested on a flow over a square cylinder confined in a channel.

Incompressible flow past a square cylinder is steady for Reynolds number values
Re = 9, Re = 18, Re = 36 with the length of the recirculation region increasing
with the increasing Reynolds number. At Reynolds number value Re = 90 we
simulated unsteady behaviour. Vortices are shed from the upper and lower walls of
the cylinder. The Strouhal number exhibited by the flow using our simulation was
St = 0.133, which in excellent agreement with the benchmark results.
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Figure 3: Steady state flow over a square cylinder at Re = 9. From top to bottom:
horizontal velocity, vertical velocity, vorticity and pressure contours.

Figure 4: Steady state flow over a square cylinder at Re = 18. From top to bottom:
horizontal velocity, vertical velocity, vorticity and pressure contours.
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Figure 5: Steady state flow over a square cylinder at Re = 36. From top to bottom:
horizontal velocity, vertical velocity, vorticity and pressure contours.

Figure 6: Unsteady flow over a square cylinder at Re = 90, t = 30. From top
to bottom: horizontal velocity, vertical velocity, vorticity and pressure
contours.

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  167



time

vo
rt
ic

ity

5 10 15 20 25 30
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Figure 7: Flow over a square cylinder at Re = 90. Vorticity at x = 0.968, y = 0
was used to measure the Strouhal number.
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[6] Škerget, L., Hriberšek, M. & Žunič, Z., Natural convection flows in complex
cavities by BEM. Int J Num Meth Heat & Fluid Fl, 13, pp. 720–735, 2003.
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