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Abstract

Some researchers have presented the application of radial basis function
approximation to the evaluation of option contracts.

In a previous study, the authors described the evaluation of Asian options by
using radial basis function approximation. The numerical results indicated that the
computational accuracy depended on the radial basis function and the reciprocal
multi-quadric function was better than the multi-quadric one.

So, in this study, some radial basis functions are applied to the evaluation of the
Asian option of one asset. We compare the multi-quadric, the reciprocal multi-
quadric, and Gaussian functions. The results show that the reciprocal multi-
quadric function and Gaussian function give better numerical results and the
reciprocal multi-quadric function is better than the others.

1 Introduction

Recently, the financial derivatives are dealt widely and the importance is expanded.
The importance of the derivative transaction is increasing for the adequate
sharing of the financial risk. The option transaction is one of the most important
financial derivatives and therefore, several schemes have been presented by many
researchers for their pricing [1, 2].

Several financial options have been developed; European option, American
option, Look-Back option, Exotic option and so on. In the previous study [3], the
authors described the formulation for evaluation of the Asian option. The results
showed that the computational accuracy of the present algorithm depended on the
radial basis function to be employed for the evaluation. In this study, three kinds
of the radial basis functions are applied for evaluation of Asian option and then,
the computational accuracy and cost are compared.
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The remaining of the paper is organized as follows. The algorithm for the
valuation of the Asian option is described in section 2. The numerical examples
are shown in section 4. Finally, the obtained results are summarized in section 5.

2 Formulation

2.1 Governing equation and strike condition

First, we will define the time-average value of the asset price S as the function:

I =
∫ t

0

S(τ)dτ. (1)

In the European-type average strike option, the payoff depends on the difference
between the time-average value and the asset price on the expiration date. The
governing differential equation of the option is given as:

∂V

∂t
+ S

∂V

∂I
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2)

If the function R is defined from the asset price S as

R =
1
S

∫ t

0

S(τ)dτ

=
I

S
, (3)

the price V is given as
V (S, R, t) = SH(R, t). (4)

Substituting equations (3) and (4) to equation (2), we have

∂H

∂t
+ FH = 0, (5)

where the operator F is defined as

F =
1
2
σ2R2 ∂2

∂R2
+ (1 − r)R

∂

∂R
. (6)

The payoff condition of the average strike option on the expiration date t = T
is defined as follows, in the case of European-call type,

max
(

S − 1
T

∫ t

0

S(τ)dτ, 0
)

(7)

and, in the case of European-put type,

max
(

1
T

∫ t

0

S(τ)dτ − S, 0
)

. (8)

where max(a1, a2) means the bigger one among a1 and a2.
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Now, we consider the pricing of the average strike option in the call-type.
Substituting equations (3) and (4) to (7), we have the payoff condition on the

expiration date t = T ;

SH(R, T ) = S max
(

1− R

T
, 0

)
,

and therefore,

H(R, T ) = max
(

1− R

T
, 0

)
. (9)

Finally, the governing equation and the boundary condition of the average strike
option are given by equation (5) and (9), respectively.

2.2 Solution using RBF

Discretizing the equation (5) with the Crank-Nicolson Scheme, we have

H(t + ∆t)−H(t)
∆t

+ (1− θ)FH(t + ∆t) + θFH(t) = 0 (10)

where the parameter θ is taken in the range of 0 ≤ θ ≤ 1.
Defining the parameters H(t) = Hm and H(t + ∆t) = Hm+1, we have

AHm+1 = BHm (11)

where

A = 1 + (1 − θ)∆tF

B = 1− θ∆tF.

The price H governed with the equation (5) is approximated with the RBF
function as

H =
N∑

n=1

λnφn (12)

where N and λj denote the total number of data points and the unknown
parameters, respectively.

Substituting equation (12) to equation (11), we have

A

N∑
n=1

λm+1
n φn = B

N∑
n=1

λm
n φn

N∑
n=1

Aφnλm+1
n =

N∑
n=1

Bφnλm
n (13)
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Figure 1: Multi-quadric RBF.
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Figure 2: Reciprocal multi-quadric RBF.

3 Radial basis functions

In this study, the following radial basis functions are employed for the valuation of
the options.

Multi-quadric RBF: The function is defined as follows. The distribution of c = 1
is shown in Fig. 1.

φ(R, Rj) =
√

c2 + ‖R−Rj‖2 (14)

Reciprocal multi-quadric RBF: The function is defined as follows. The
distribution of c = 1 is shown in Fig. 2.

φ(R, Rj) =
1√

c2 + ‖R−Rj‖2
(15)
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Figure 3: Gaussian RBF.

Gaussian RBF: The function is defined as follows. The distribution of c = 1 is
shown in Fig. 3.

φ(R, Rj) = exp
(
−‖R−Rj‖2

2c2

)
(16)

3.1 Algorithm

The algorithm of the solution procedure is defined as
1. Distribute N data points on 0 ≤ R ≤ Rmax and discretize 0 ≤ t ≤ T with

T/M .
2. Solve equation (12) to evaluate HT on the expiration date t = T .
3. Approximate HT by equation (12) to evaluate λT

n on the expiration date
t = T .

4. t← T −∆t.
5. Solve equation (13) to estimate λt

n.
6. t← t−∆t.
7. IF t �= 0, go to step 5.
8. Evaluate H0 from equation (12) and λ0

n on the date t = 0.

4 Numerical example

The simulation parameters are defined as shown in Table 1. The total number of the
data points are 101. They are distributed uniformly in the range of 0 ≤ R ≤ 1.0.
For comparison with the finite difference solutions, the time-step size is taken as
∆t = 0.0005; the number of the time-step is M = 1000. The computations are
performed with a personal computer of Intel Core Solo 1.06 GHz and 1 Gb-main
memory and Mathematica version 5.2.

First, CPU times are compared in Table 2. The RMQ-RBF computation is fastest
among them and followed with, in turn, MQ-RBF, FDM and Gaussian. Especially,
the CPU times of MQ and RMQ are smaller than the FDM.

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  137



Table 1: Parameters for numerical result.

Expiration date T = 0.5 [year]

Risk free interest rate r = 0.1
Volatility σ = 0.4
Crank-Nicholson θ-weighted method θ = 0.5
Maximum R Rmax = 1.0
Number of timestep(timestep size) M = 1000 (∆t = 0.0005)

Number of stock data points N = 101

Table 2: CPU Time.

Function CPU Time (s)

Multi-quadric 13.453

Reciprocal Multi-quadric 11.046

Gaussian 1158.26

FDM 14.593
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Figure 4: Multiquadrics RBF, c = 0.04.

Next, the computational accuracy is compared. The parameter c of the MQ-
RBF (14) is taken as c = 0.04, which was determined from the condition
number of the coefficient matrix [3]. Figure 4 shows the option value H at
t = 0Ct = T

2 = 0.25Ct = T = 0.5. The abscissa and the ordinate denote
R and H , respectively. The results by finite difference method are shown in
Fig. 5. We notice that the MQ-RBF solution error increases for larger value of R.
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Figure 5: FDM.
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Figure 6: Reciprocal Multiquadric RBF, c = 0.04.

0 0.2 0.4 0.6 0.8 1
R

0

0.2

0.4

0.6

0.8

1

O
p
t
i
o
n
V
a
l
u
e

H

t�0.5
t�0.25
t�0

Figure 7: Gaussian RBF, c = 0.01.

Next, the results by RMQ-RBF are discussed. The RMQ-RBF solutions are
shown in Fig. 6. When comparing 6 with Fig. 4, we notice that the RMQ-RBF
solution is improved for larger value of R.
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The results by Gaussian RBF are shown in Fig. 7. In this case, the parameter c
is changed to c = 0.01 in order to improve the accuracy.

5 Conclusions

This paper described the comparison of the RBFs for evaluation of the Asian
option. The formulation for evaluating the option was described and the numerical
results were shown. Multi-quadric (MQ), reciprocal multi-quadric (RMQ), and
Gaussian RBFs were compared in numerical examples. From the viewpoint of the
CPU time, the RMQ-RBF computation was faster than the others and followed
with, in turn, MQ-RBF, FDM and Gaussian. Especially, the CPU times of MQ
and RMQ are smaller than the FDM. When the RBF solutions is compared with
FDM one, the solutions by RMQ and Gaussian RBFs agree well with the FDM
one. However, the MQ solution has relatively large error. Finally, the authors can
conclude that the RMQ-RBF is more adequate for valuation of Asian option from
the both sides of the CPU time and the computational accuracy.
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