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Abstract

The dual reciprocity method (DRM) has been successfully employed along with
the boundary element method (BEM) to simulate non linear flow phenomena
such as convective momentum transport and shear thinning fluids. In the latter
however, domain partitioning has been necessary to achieve convergence when
the power law index is below 0.8. This paper shows how a single domain
DR-BEM formulation for non Newtonian low Reynolds number flows can be
implemented in order to obtain accurate results for lower values of the power law
index. Some of the characteristics of this implementation are the use of quadratic
elements and an iterative solution of the non linear system of equations using a
modified Newton–Raphson method. Along with the implementation, two radial

inelastic non Newtonian flow: couette mixing and slit flow. Solutions obtained are
also compared to results from a multi-domain dual reciprocity method (MD-DRM)
for equal meshes. Results showed that using the above mentioned strategies, single
domain DR-BEM can accurately predict the flow field in inelastic non Newtonian
flow for values of the power law index as low as 0.5. It is also worth noting that the
accuracy of the single domain strategy was shown to be higher than MD-DRM,
although the latter clearly reduced computational resource consumption.
Keywords: single domain DRM, power law fluids, higher order elements, iterative
methods for non linear systems.
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basis functions (RBFs) were used and compared on two classical problems of
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1 Introduction

Study of non linear phenomena such as non Newtonian fluid flow using domain
methods is accurate but requires large amounts of computational resources and
are often accompanied with complex remeshing algorithms. The BEM has the
advantage of greatly reducing the computational cost of numerical simulations
by only discretizing the boundary of the problem thus reducing the problem
dimensionality by one [1], but are often seen in disadvantage to domain methods
when dealing with non linear problems. Non linear terms are usually treated in
BEM as a domain integral of a pseudo body force [2], that was originally solved
using cell integration, a type of domain meshing that makes BEM lose its boundary
only nature and increase computational cost beyond FEM [3]. A more recent
development is the DRM which uses RBF interpolation to expand the non linear
term and then apply the usual divergence theorem to convert domain integrals into
equivalent boundary integrals [4].

The main difficulty associated with shear thinning and shear thickening fluids
is the dependence of the viscosity on domain variables, namely velocity gradients,
leading to highly non linear Partial Differential Equation (PDF). To solve these
type of flows, [2] uses a DRM approximation along with domain sub divisions.
The resulting approach called multi-domain dual reciprocity (MD-DRM) showed
to have good accuracy while significantly reducing resource consumption in
comparison to other subdomain approaches such as the Green element method
(GEM) [5]. Both works coincide with in the necessity of subdomains for the
simulation of highly non linear problems.

The objective of this paper is to show how an adequate implementation
of the DR-BEM along with a specific iterative scheme for the non linear
system of equations can give accurate results for the flow of an inelastic non
Newtonian fluid obeying the Power Law rheological model [6] without the need
of domain partitioning, situation that can be an advantage if moving boundaries
are considered. Two numerical examples are used to test the performance of the
proposed formulation: couette and slit flow, both having analytical solutions to
which the results obtained are compared [6]. The use of these examples also allows
for different considerations as the first has only Dirichlet boundary conditions
while the second is a mixed boundary condition problem (pressure driven flow).
This implementation is also tested using two different radial basis functions (RBF),
the traditional thin plate spline (TPS) and a more up-to-date compact support RBF
with different values of the compactness parameter.

Work is divided as follows. Governing equations and integral formulation are
initially presented, followed by the details of the numerical implementation of the
resulting equations. The next section shows the results obtained for the different
problems and finally conclusions are drawn.
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2 Direct boundary integral formulation for non Newtonian
fluids

The fluid inside the a closed Lyapunov surfaces S must obey the non Newtonian
Stokes system of equations (1). The use of Stokes equation for this case is
supported in the fact that common non Newtonian fluids have viscosities well over
103Pa · s, assuring that Re << 1.

∂ui

∂xi
= 0

∂σij

∂xj
= 0 (1)

where

σij = −pδij + η (γ̇)
(
∂ui

∂xj
+
∂uj

∂xi

)
(2)

In equations (1) and (2), �u is the velocity, p the pressure, δij the Kronecker delta,
η (γ̇) is the viscosity of the fluid.

An adequate rheological model for η (γ̇) must be selected in order to accurately
simulate a given physical system. In the case of inelastic non Newtonian fluids, the
power law model has shown to be a powerful tool bringing together accuracy and
simplicity [6].

η (γ̇) = kγ̇n−1 (3)

Boundary conditions vary according to the problem that is being solved. In
the case of couette flow, the external cylinder is stationary while the internal one
rotates at a constant angular velocity of value 1. For slit flow, the superior and
inferior surfaces are stationary, while at the entrance and exit the perpendicular
velocities are made nil while the tractions are given only by a pressure difference
between them. For the cases shown, ∆p is also 1.

Integral representations for the velocity in BEM are only valid for a constant
viscosity, therefore a small modification must be made to the internal tractions (2).
The idea is to subtract and add the stress tensor multiplied by an arbitrary constant
µN allowing to redefine the momentum equation as:

∂σN
ij

∂xj
= −∂τ

e
ij

∂xj
(4)

where

τe
ij =

(
kγ̇n−1 − µN

) (
∂ui

∂xj
+
∂uj

∂xi

)
; σN

ij = −pδij + µN

(
∂ui

∂xj
+
∂uj

∂xi

)
(5)

Using Green’s second identity for stokes flow [7] to expand the Newtonian
traction (σN

ij ) and using the properties of the fundamental solutions, the integral
representation of the velocity field for an arbitrary point in a closed domain filled
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with a non Newtonian fluid, which for the present case is a point x ∈ Ωi, is given
by:

Cui (x) −
∫
S

Kij (x, y)uj (y)dSy =
1
µN

∫
Ω

uj
i (x, y)

(
−∂τ

e
jk

∂xk

)
dΩ

− 1
µN

∫
S

uj
i (x, y)σN

jk (�u (y))nk (y) dSy (6)

where C is a constant dependant on the position of the point. For internal points
C = 1 and for point a smooth boundaryC = 1/2.

The Stokeslet for two dimensions is given by:

uj
i (x, y) = − 1

4π

[
ln

(
1
r

)
δij +

(xi − yi) (xj − yj)
r2

]
(7)

r being the Euclidean distance between point x and y, r = |x − y|. The
corresponding normal derivative or Stresslet is given by (in two dimension):

Kij (x, y) = − 1
π

(xi − yi) (xj − yj) (xk − yk)nk (y)
r4

(8)

3 Dual reciprocity approximation

In order to avoid domain meshing, the dual reciprocity method [4] is used to
expand the domain integral. The basis of this method is to approximate the non
homogeneous term using interpolation functions [2]:

−∂τ
e
jk

∂xk
=

p∑
m=1

f (x, ym)αm
l δil (9)

f (x, ym) is a known set of functions dependent only on geometry and αm
l

is an unknown vector of coefficients to be determined by collocation on ym

(m = 1, 2, 3, ..., p) points in the domain of interest. Using this approximation
and Green’s identities, the domain integral becomes:

∫
Ω

uj
i (x, y)

(
−∂τ

e
jk

∂xk

)
dΩi =

p∑
m=1

αm
l

[
ûl

k (x, zm)−

∫
S

Kkj (x, y) ûl
j (y, zm) dSy +

∫
S

uk
i (x, y) t̂lj (y, zm) dSy


 (10)
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3.1 Choice of interpolating function

One of the most popular interpolating functions used is the thin plate spline:

fm (x) = r2 (x, ym) log (r (x, ym)) + P1 (x) (11)

This function has shown to be an accurate and simple alternative for use with
boundary integral methods [2, 3]. For this case, the augmented polynomial P1 is
composed of the functions x1, x2 and 1. The particular solutions of the first term
of the second degree GTPS are (x̄i = xi − ym

i ):

ûj
i (x, ym) =

1
96

[(
5r4 log r − 7

3
r4

)
δij − x̄ix̄j

(
4r2 log r − 5

3
r2

)]
(12)

t̂ji (x, ym) =
1
96

[
8r2 (x̄jni + x̄inj + x̄lnlδij)

(
2 log r − 1

3

)
−4x̄ix̄j x̄lnl

(
4 log r + 1

3

)
]

(13)

Since the polynomials are an integral part of the GTPS, the particular solutions
of the complete GTPS is equal to functions given in (12) and (13) plus the
summation of the particular solutions to each of the augmentation polynomials.
It is worth noting that these polynomials are only dependant on point x, not the
other collocation nodes ym; this fact also holds true for the auxiliary flow fields.

The values of the auxiliary fields and derivatives of the augmented polynomials
used with the second degree GTPS are the following:

For f (x) = x1

ûj
i (x, ym) =

1
24

[
x3

1 (3δij − 2δ1iδ1j − δ2iδ2j)+
3x1x

2
2 (δij − δ1iδ1j) − 3x2

1x2 (δ1iδ2j + δ2iδ1j)

]
(14)

t̂ji (x) =
1
8




3x2
1 (n1δij + njδ1i + niδ1j)−

2x2
1 (2n1δ1iδ1j + n1δ2iδ2j + n2δ1iδ2j + n2δ1jδ2i)+

x2
2 (n1δij + njδ1i + niδ1j − 2n1δ1iδ1j) +

2x1x2 (n2δij + njδ2i + niδ2j)−
4x1x2 (n2δ1iδ1j + n1δ1iδ2j + n1δ1jδ2i)




(15)

Particular solutions for f (x) = x2 are of the same form, but wherever a sub-
index 1 appears, it must be replaced by 2 and vice versa. Finally for f = 1

ûj
i (x) =

1
16

[
3 |x|2 δij − 2 |xi| |xj |

]
(16)

t̂ji (x) =
1
4

[xjni + xinj + xlnlδij ] (17)

The second choice of interpolating function is a compact support radial basis
function (CS-RBF) [8] which has the characteristic of assigning a value of 0 to
points outside a circle of radius C. In [9] CS-RBFs are used along with DRM to
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solve the Navier–Stokes system of equations with good results, although as is the
case in this paper, the compactness of the function is not used and parameter C is
chosen to be bigger than the total domain. The specific function used in this work
was (non-zero part):

fm (x, ym) =
(

1 − r (x, ym)
C

)4 (
4
r (x, ym)

C
+ 1

)
(18)

The auxiliary flow fields for this CS-RBF are (Terms corresponding to r > C
are omitted):

ûj
i (x, ym) =




(
3
16r

2 − 25
48

r4

C2 + 24
35

r5

C3 − 35
96

r6

C4 + 32
441

r7

C5

)
δij−

x̄ix̄j

(
1
8 − 5

12
r2

C2 + 4
7

r3

C3 − 5
16

r4

C4 + 4
63

r5

C5

)

 (19)

t̂ji (x, ym) =




(
1
4 − 5

3
r2

C2 + 20
7

r3

C3 − 15
8

r4

C4 + 4
9

r5

C5

)
x̄jni+

(x̄inj + x̄lnlδij)
(

1
4 − 5

3
r2

C2 + 20
7

r3

C3 − 15
8

r4

C4 + 4
9

r5

C5

)
−2x̄ix̄j x̄lnl

(
− 5

6C2 + 12
7

r
C3 − 5

4
r2

C4 + 20
63

r3

C5

)


(20)

4 Integral equation discretization

Traditionally, the approaches used to approximate both the geometry and the
densities have been constant and linear elements. Elements of higher order, such as
quadratic, have found only limited application in a reduced number of problems.
In this work, both geometrical and functional discretization had been made using
quadratic elements. The interpolation scheme for a function X(ξ) is given by:

X (ε) = ψ1 (ε)X(1) + ψ2 (ε)X(2) + ψ3 (ε)X(3) (21)

where X(1), X(2), X(3) are the values of X(ξ) on the three nodes of the element.
Interpolation functions �ψ are show in (22).

ψ1 = 1
2ε (ε− 1) ; ψ2 = (1 − ε) (1 + ε) ; ψ3 = 1

2ε (ε+ 1) (22)

The resulting set of integrals are regular and can be evaluated using standard
Gaussian quadratures. In order to avoid the weak singularity present when
calculating the integral kernels when integrating over the same element where the
source point is located, Telles’ transformation is initially used, followed by rigid
body motion in the case of the double layer kernel [1].

5 Iterative solution of the non linear system of equations

After the integral equations are assembled, a system of equations arises for the
variables ui on points x ∈ Ωi, and either ui or σijnj on ξ ∈ S depending on
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boundary conditions. Given the non linear character of this system caused by the
dependence of τe

ij on the nodal velocities, an iterative procedure must be set in
place to determine the actual solution. For simplicity a new system of equations is
defined as:

[A]
[
�X

]
=

[
�C
]

+
[
�B

(
�X

)]
(23)

where matrix A is constituted with elements of matrices H and G depending on
boundary conditions. Vector X are the unknowns and C the boundary conditions
multiplied by the corresponding elements of H and G, and B the non linear term.

The solution of this complete system of equations can be sought in different
ways. Simulations showed that traditional schemes such as Piccard iterations
only achieved convergence when the power law index is above 0.8. In order to
achieve convergence in values well below 0.8 as those reported in this paper,
a Newton–Raphson method with Backtracking was employed directly on (23)
without distinction if a given unknown was a velocity or a traction. Following the

usual procedure, the following equation is found, whereW
(
�X

)
is the function to

minimize.

W
(
�X

)
≈W

(
�X(t)

)
+

1
φ
JX

(
�X(t)

)
·
(
�X(t+1) − �X(t)

)
(24)

The Jacobian matrix (JX ) was calculated numerically using centered finite
differences with the data available from iteration t. φ is a smoothing parameter
for the iterative method. The program works initially with φ = 1, if the problem
diverges, then equation (25) is used.

φoptimal ≈




∥∥∥W (
�X(t+1)

)∥∥∥2

∥∥∥W (
�X(t)

)∥∥∥2 + 1




−1

(25)

6 Accuracy assessment

This section presents two problems, couette and slit flow for non Newtonian power
law fluids in order to test the performance of the proposed implementation, along
with the RBF’s and different values of the support parameter C in the case of the
CS-RBF (Eq. 18).

6.1 Couette flow

This problem has an analytical solution for the tangential velocity. The analytical
solution is given by [6]:

ut =
ω(

re

ri

)2/n

− 1
× r

2/n
e − r2/n

r(2/n)−1
(26)
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where ut is the tangential velocity at a radius r, ω is the angular velocity of the
internal cylinder of radius ri, and re is the radius of the external cylinder. n is
the Power Law Index of the rheological model. A simple mesh consisting of 24
quadratic elements on the outer surface, 24 quadratic elements on the inner surface
and 240 internal collocation points will be employed.

Table 1 shows good results of the numerical method when compared to the
analytical solutions. It is worth noting that all simulations generated an error below
1%. Best performance by far was obtained with the CS-RBF using a value of
C = 15.0, 50% larger than the maximum distance between two points in the
domain. At smaller values of n GTPS showed a greater error compared to CS-
RBF, but total errors are still within acceptable parameters. In all cases, MD-DRM
was the least accurate of the tested approximations, but the time used to find such
solutions was significantly smaller than the one for the single domain approaches.
It is important to note however that the MD-DRM has been tested for values of n
as low as 0.2 with good results, but these require denser meshes.

Table 1: Implementation performance on non Newtonian couette problem.

n = 0.8 n = 0.6 n = 0.5
L2 error (%) Iter. L2 error (%) Iter. L2 error (%) Iter.

GTPS 0.73868 18 2.0531 10 3.048 16

CS 10.01 0.54706 6 1.5845 13 2.4178 18

CS 15.0 0.5464 8 1.5797 18 2.4115 20

CS 20.0 0.54755 7 1.5797 16 2.4106 17

MD-DRM 1.9076 6 4.7367 11 6.3728 14

By graphically comparing the results from the single domain approximation CS
20.0 with the MD-DRM approach (Figure 1(a)) it is clear how the single domain
solution is quite more accurate in the zones of greater non linearity (left of the plot).
Single domain approaches are in this case the best choice in terms of accuracy,
although it is important to consider that given the matrix sparsity of MD-DRM
solutions found using this approach are significantly faster allowing for the use of
denser meshes with which the solution can improve its accuracy.

6.2 Slit flow

An analytical solution is available for the velocity profile [6]:

u1 =
n

2n+ 2

(
1
2k

∆p
L

)1/n

h(1/n)+1

[
1 −

(
2 |x2|
h

)(1/n)+1
]

(27)
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Figure 1: Velocity profiles for Non Newtonian (a) couette and (b) slit flow.

whereL is the channel length, h its height and ∆p the imposed pressure difference.
The tested mesh consisted of 48 quadratic elements on the outer surface, 385
internal collocation points.

Table 2 shows that all the single domain solutions exceed the accuracy of MD-
DRM for n = 0.8. The case of CS 3.35 (50% larger than the maximum distance
between two points in the domain) is worth signaling out, as the total L2 error
is an order of magnitude below the remaining approximations. As the power law
index is reduced, as expected all solutions increase their L2 errors, making some
of the single domain approaches show higher errors than MD-DRM for n = 0.5
but overall showing that the correct selection of the interpolation function can give
very accurate results without domain partitioning. However, it is evident that the
DR-BEM works better of Dirichlet boundary conditions (i.e. couette flow) than for
mixed boundary conditions.

In Figure 1(b) it can be seen that in this case the biggest errors for the single
domain approaches are located in the center of the domain, not near the walls
where the higher gradients exists. This situation shows that a single domain DR-
BEM tends to overshot the viscosity increase and therefore decrease the total flow
compared to the analytical solutions. As in the former section, the single domain
approach has a greater accuracy than MD-DRM.

7 Conclusions

The use of single domain DRM for inelastic non Newtonian flows has been
traditionally considered not accurate for values of the power law index below 0.8
making the use of domain partitioning a requirement. This paper shows how the
use of higher order elements combined with an adequate iteration scheme for the
resulting non linear system of equations can improve the results obtained for this
problem without the need of domain partitioning. Results for couette and slit flow
showed that the use of this strategies improves the accuracy of single domain DRM
above that of MD-DRM for values of the power law index as low as 0.5. Even
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Table 2: Implementation performance on Non Newtonian slit flow.

n = 0.8 n = 0.6 n = 0.5
L2 error (%) Iter. L2 error (%) Iter. L2 error (%) Iter.

GTPS 6.0912 6 20.457 9 35.693 34

CS 2.24 1.3936 30 10.557 13 54.355 19

CS 3.35 0.10092 37 173.731 16 2.2979 21

CS 4.47 3.8419 20 8.9166 22 16.016 16

MD-DRM 11.238 6 15.52 7 18.144 8

though MD-DRM is less time consuming and can simulate cases of lower values
of n, the requirement of remeshing if moving boundaries are considered makes the
use of single domain DRM a justified and accurate choice.
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