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Abstract

This article presents a hybrid three dimensional dual reciprocity boundary element
method (BEM) for solving the early stage of a 3D time dependent convective
heat transfer equation in non-homogeneous media. The method addresses the
problem in which the initial distribution of temperature presents a discontinuous
jump at the interface between two regions of very dissimilar diffusion coefficients.
The goal of this hybrid formulation is to sort out the numerical inconvenience
of different time scales and apparent large flux during early time by combining
the 3D BEM with a series of 1D semi-analytical profiles of the time dependent
heat diffusion equation, employing a two-level finite difference time integration
scheme. This article presents the theoretical background, and one 3D test example.
The formulation provided offers convenient advantages for relatively large scale
models and complex 3D geometries.

1 Introduction

The problem of transient heat transport through 3D non-homogeneous media
represents a real challenge for any standard numerical approach. A particular
difficult situation is when the initial distribution of temperature presents a
discontinuous jump, and this discontinuity is located at the interface between two
regions A and B, as shown in Fig. 1(a), of very dissimilar diffusion coefficients,
ie. differing in few to many orders of magnitude. Suppose that A is a region of
very low conductivity with initially high temperature and characteristic size LA,
embedded in region B, highly conductive, which is initially at lower temperature.
As time passes by, there is a faint energy release from the high temperature region
and thermal energy is quickly conveyed by convection and diffusion throughout
region B. In view of the different diffusivities a boundary layer-type profile of

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  101

doi:10.2495/BE070101



characteristic thickness ds(t) will develop close to the interface Γ in region A.
This scenario presents two different problems. First, the high contrast between
the transport properties at both sides of the interface, which introduces time and
length scales of very different orders of magnitude; and second, the discontinuous
jump of temperature, which introduces a “nearly infinite” thermal flux at early
stage of the process. Most time marching integration schemes combined with the
conventional finite element method, boundary elements methods (BEMs), finite
volume methods, or mesh-less methods are likely to fail when dealing with these
kind of problems, being a common symptom large first-time step errors, numerical
instabilities, excessive numerical dispersion or diffusion results.
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Figure 1: (a) Region of low diffusivity A embedded in a region of high diffusivity
B. (b) Each degree of freedom i = 1, . . . , N at the interface Γ is
associated with a semi-analytical profile given by (3).

Numerical modelling with BEM [1, 2] is very attractive in the sense that it
avoids volume discretisation and at the same time it uses the fundamental solution
of the leading differential operator in the equation to solve. BEM applied to the
C-DHT equation has been widely developed in the last decades [3, 4], and a
large variety of efficient formulations were established. An interesting approach
for improving the accuracy at early time stage has been proposed by Grigoriev
and Dargush in [5], where a high-order BEM has been established in terms of
a singular flux formulation. Other approaches involve the use of time or space
scaling in order to zoom into the boundary layer developed close to the interface
and perform asymptotic matching with the far field solution. But the computational
implementation of these sub-scaling techniques for arbitrary 3D problems might
become too complex. The aim of this work is to propose another approach to
solve the time dependent convective-diffusive heat transfer (C-DHT) equation in
relatively complex 3D situations with a hybrid Dual Reciprocity BEM (DRBEM)
employing a simple finite difference two-time-levels time marching scheme. In the
proposed hybrid approach, a standard DRBEM strategy for region B, is coupled
at the interface Γ with several independent semi-analytical profiles defined in
region A. These profiles should be capable of capturing the solution close to Γ thus
avoiding the use of high order time integration schemes, or boundary layer scaling
techniques. In addition, the method should employ a minimum amount of adjusting
parameters, so that to reduce the computational burden as much as possible. The
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integration domain is discretised with a mixed unstructured mesh, where some
regions may be decomposed into many sub-domains and some others may be
discretised only in their boundary. The former is known as multi-domain region
while the latter is identified with single domain region. The assembly of multi and
single-domain regions into the same problem provides a suitable pre-processing
flexibility which allows the treatment of complicated 3D geometries. Usually,
the DRBEM yields a system of equations whose condition number grows with a
certain power law of the number of degrees of freedom [6], thus imposing an upper
practical limit to the size of the model to solve, this problem for DRBEM has not
been completely sorted out so far. We define the local transient time scale (τL) of a
region of the domain of characteristic size L by taking the maximum between the
convective (τA), the diffusive (τD), and the reaction time scales (1/kr), according
to τL = max (τA, τD, 1/kr), where τA := L/v and τD = 4L2/α, where, v = |v|
is the average absolute value of the velocity in the region, and α is the average
local diffusivity. A “slow-transport region” (STR) is defined as the part of the FPM
with very low diffusivity such that τL is much higher than the local transient time
scales defined for any other region in the integration domain or to the time scale
of practical interest in the problem (th). We define a “fast-transport region” (FTR)
as that part of the FPM characterised by high values of conductivity such that
τL(FPM) � τL(STR). STR’s can also be regarded as inclusions embedded in
a larger FTR region, as illustrated in Figure 1(c). When STRs are in close contact
to FTRs the solution in the former can be expressed in terms of an assembly of
one dimensional asymptotic semi-analytical test profiles of the diffusion equation,
as sketched in Fig. 1(b). In this approach, the smaller the ratio th/τL the more
accurate the approximation.

2 Governing equations

The heat transfer equation considered for FTR (B-type) regions is given by:

∂Tf

∂t
+ ∇ · q = −krTf + ∇ · qm, (1)

where kr is a reaction constant, t is time, T is temperature, the subscript f stands
for the FTR, and the heat flux is given by: q = vTf −α∇Tf . The source term qm

on the right hand side of (1) represents the flux exchanged with the STR in close
contact to the present FTR, and α is the thermal diffusivity of the region. The
temperature in the STR is also described by the 3D C-DHT equation. However, in
view of the large difference between diffusivities [7], it is enough to solve a 1D
local profile of (1) given by:

∂Ts

∂t
− αs

∂2Ts

∂z2
= −krTs, (2)

where subscript s stands for variables in STR (Region A in Fig. 1) and z is the
normal distance from the interface to the STR (see Fig. 1a). This approximation
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is valid as long as th � τL or LA � ds(th) in the STR, meaning that the
characteristic length of the STR (LA), see Fig. 1, is several orders of magnitude
larger than the penetration depth ds(t) =

√
αst/2 at time th into the STR. The

STR equation is solved by means of a Semi-Analytical Method (SAM), originally
presented by Vinsome and Westerveld [8], later adapted by Birkholzer et al [9] to
solute transport problems and recently applied by Peratta and Popov for arbitrary
fractured porous media [7]. The idea is to represent the temperature profile along
z by means of a reasonably flexible function containing few adjusting parameters
to be determined by imposing suitable conservation equations at the interface. The
main advantage of this approach is that it can be evaluated in a simple and fast
way, thus lowering computational burden. The trial function is defined as follows:

Ts(z, t) − Ti =
(
Tf − Ti + p1z + p2z

2
)
exp

[
− z

ds

]
, (3)

where Ti is temperature in STR at initial time (assumed to be uniform), Tf is the
time varying temperature at the interface STR-FTR, and p1 and p2 are two time
varying best fit parameters to be adjusted by imposing the conservation of energy
and continuity of T throughout the interface (Γ). This surface is discretised into
Ne Boundary Elements (BEs), each one containing a certain number of collocation
points (i), as represented in Fig 1, depending on the interpolation degree of the
BEM. Thus, parameters p1 and p2 will be different for each collocation point and
they must be recalculated at each time step for every grid point according to local
conditions at Γ. Hence, p1 and p2 can be regarded as new degrees of freedom
and their values define a unique local temperature profile for the adjacent STR
associated to each freedom node at Γ.

Next, we derive the two local equations used to determine p1 and p2. The idea
is to insert (3) into the C-DHT for the STR (2) and to evaluate it in the interface
(z = 0). The time derivative of T in either STR or FTR is approximated by the
two-time level finite difference scheme defined by:

∂T

∂t
≈ T m+1 − T m

δt
; and

(
T

∂nT

)
= θ

(
T

∂nT

)m+1

− θ̄

(
T

∂nT

)m

(4)

where θ ∈ [0, 1]; θ̄ := (θ − 1); ∂nT := n̂ · ∇T ; and n̂ is the normal vector at
the interface. The first and second derivatives of Ts at the interface (z = 0) are,
respectively:

∂Tm

∂z

∣∣∣∣
z=0

= p1 − Tf − Ti

ds
, and

∂2Tm

∂z2

∣∣∣∣
z=0

= 2p2 − 2
p1

ds
+

Tf − Ti

d2
s

. (5)

By inserting (4) and (5) for z = 0 into (2), we obtain the first equation:

T m+1
f − T m

f

αsδt
=

T m+1
f − Ti

d2
s

− 2
p1

ds
+ 2p2 − k

αs
T m+1

f (6)

The second equation is provided by the energetic balance in a local 3D control
volume attached to a freedom node at the interface. It remains valid as long as the
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height δz of the control volume is considerable larger than the penetration depth
and considerably smaller than the size of the STR, ie. LSTR � δz � ds. The time
derivative of the energy contained in a differential volume of unitary cross section
and height dz in the STR can be written as:

∂

∂t

∫
V

(Ts − Ti) dV = −αs
∂Ts

∂z

∣∣∣∣
z=0

+ kr

∫
V

(Ts − Ti) dV, (7)

where it was considered that ∂Ts/∂z = 0 when z � ds. Next, it is convenient to
define the following energy integral:

I(t) :=
∫

V

(Tf − Ti) dV =
∫

z

(Ts(z, t) − Ti) dz, (8)

which is proportional to the internal energy in dV , and can be expressed in terms
of p1 and p2 by means of eq (3) as: I(t) = (Tf − Ti) ds + d2

sp1 + 2d3
sp2. Then,

the energy balance equation can be written in the following way:

Im+1 = Im − αsδt

(
p1 − Tf − Ti

ds

)
, (9)

where Im = I(tm) and Im+1 = I(tm + δt), are the energy integrals at times tm
and tm + δt, respectively. Finally, (6) and (9) form a system of two equations with
two unknowns (p1, p2) for each degree of freedom at Γ of the form:[

2αs

ds
−2αs

αs + ξd2
s 2ξd3

s

](
p1

p2

)
= B

(
T m+1

f , T m
f , Ti, 1

)t

(10)

and matrix B ∈ R2×4 on the right hand side term is given by:

B =

[
θµ − 1

δt −θ̄µ + 1
δt −αs

d2
s

0

−dsξ + αsθ
ds

− θ̄αs

ds
dsξ − αs

ds
Im(kr − ξ)

]
(11)

being ξ := 1/δt− krθ and µ := kr + αs/d2
s. The temperature profile in the STR,

can be obtained by solving the system (10) for the parameters p1 and p2. Note that
T m+1

s becomes function of the temperature in the interface (Tf ) at Γ, at present
and previous time levels, the initial temperature in the block Ti and the energy
content in the volume I .

3 DRBEM

The time dependent C-DHT in the FTR is solved with the DRBEM [4, 10]. First,
the C-DHT is cast into a Poisson-like equation αf∇2Tf (x) = ρ(x, t); x ∈ Ω;
with an arbitrary source term ρ(x, t) and suitable Dirichlet, Neumann or Robin
boundary conditions at the boundary ∂(Ω).
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Then, in the context of the BEM, the matrix form of the discretised integral
formulation can be expressed in the following way:

αf (H Tf − G ∂nTf ) = Sρ, (12)

where H ∈ RM×M and G ∈ RM×N are the standard BEM matrices based on the
Green’s function of Laplace equation, S ∈ RM×M is the DRM matrix, N is the
number of freedom nodes used to discretise Γ, M = N + L, and L is the number
of DRM nodes in Ω. The column arrays Tf ∈ R(M×1) and ∂nTf ∈ R(N×1)

specify Tf and ∂Tf/∂n̂ in each freedom node and the DRM matrices are defined
as follows [4, 11]:

S :=
(
HÛ− GQ̂

)
F−1, S ∈ RM×M (13)

where F = fij ,∈ R(M+4)×(M+4) is the 3D augmented thin plate splines radial
basis functions matrix defined by the set {rij , 1, xj, yj , zj}. Here, rij is the
distance between i and j freedom nodes, whereas 1, xj, yj , zj is the augmentation
polynomial at point j. Then, Û = ûij ,∈ RM×(M+4) and Q̂ = ∂ûij/∂n̂i ∈
RN×(M+4) are the usual DRM matrices, whose elements obey the following
relationship ∇2ûij := fij . Next, the generalised right hand side term for the C-
DHT ρ is given by:

ρ(x, t) =
∂Tf

∂t
+ v · ∇Tf + krTf . (14)

Finally, the matrix form of the discretised integral formulation can be expressed in
the following way:

HTf − G∂nTf =
S
αf

[
Tm+1

f − Tm
f

δt
+

3∑
p=1

(Vp · Tp) Tf + krTf

]
, (15)

where the following matrices were employed [6, 11]: Vp = diag {vp} and
Tp = ∇pF · F−1; where V ∈ RM×M×3 and T ∈ RM×M×3, see ref. [11] for
details.

4 Numerical implementation

The linear system established by eq. (10) provides the parameters p1 and p2 of each
freedom node in Γ. These parameters define a unique 1D profile of temperature
in the STR that best matches the required conservation equations. However,
in a large scale calculation it might be more useful to deal with temperatures
(T m+1

f ) and normal fluxes (qm+1
m ) rather than with p1 and p2. The change of

variables: (p1, p2) → (Tf , qm)m+1 can be done by expressing the normal flux
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exchanged between STR and FTR in terms of p1 as: qm = vnTf − αs
∂Ts

∂n =

αs

(
p1 − Tf−Ti

ds

)
, so that to obtain:

p1 =
qm

αs
+

Tf − Ti

ds
. (16)

Then, combination of eqs. (2), (5) and (16), yields:

p2 =
qm

αsds
+

Tf − Ti

2d2
s

+
1

2αs

∂Ts

∂t
− kr

2αs
Tf , (17)

or expressed in a more suitable way:(
p1

p2

)
= E

(
T m+1

f

qm+1
m

)
+ F, (18)

where

E =
1
αs

(
αs

ds
1

αs

2d2
s

+ 1
2δt − kr

2
1
ds

)
and F = −Ti

ds

(
1

1
2ds

+ 1ds

2αsδt
Tf

Ti

)
.

(19)
The use of (18) in (10) provides a more suitable expression that relates temperature
with normal flux at the interface:

A∗
1T

m+1
f + A∗

2q
m+1
m = B∗ (20)

where

A∗
1 = (1 − θ)

αs

ds
+
(

3 +
d2

s

αsδt
− d2

skr

αs

)
dsξ, A∗

2 = 1 + 3
ξd2

s

αs
,

B∗ = (1 − θ)
αs

ds
T m

f + 3dsξTi + Im (kr + ξ) +
d3

sξ

αsδt
.

Thus the semi-analytical part of the method introduces one equation (20) per each
freedom node located at Γ. Note that the coefficients A∗

1,2 and the right hand side
term RHS∗ involved in (20) depend only on the energy integral I and the field
values at the previous time step (m), as well as the material properties and the
initial temperature Ti, but they no longer depend on the unknown T m+1

f . Next,
assembly of eq. (15) yields the following system of linear equations:

M1Tm+1
f − θGqm+1

f = M̄1Tm
f − θ̄Gqm

f (21)

where (
M1

M̄1

)
:=
(

θ

θ̄

)
αfH−

(
θ

θ̄

)
S

3∑
p=1

(Vp · Tp) −
(

ξ

ξ̄

)
S (22)

and ξ̄ := 1/δt − kr θ̄. After applying proper boundary conditions, eq.(21) yields
a system of equations of the form Ux = b, where array x contains the unknowns
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q and T , and b is composed of the right hand side term of eq (21) and the
corresponding boundary conditions. Finally, eqs (20) and (21) are solved together,
either by assembling all the equations in the same system of equations or by an
iterative technique between STR and FTR systems, in order to solve the coupled
FTR-STR problem.

5 Results

Some benchmark examples with this approach have already been conducted in our
recent paper [7], particularly for problems of flow and solute transport through
fractured and non-fractured porous media. This section will present one of those
results in the context of a heat transfer problem.

5.1 Test problem for a slab

The test example consists of a slab of length L = 21m and square cross section
of 1m by 1m, constant along L, as shown in Fig. 2. The block is composed of
two regions: STR and FTR, corresponding to αSTR = 10−10m2/s and αFTR =
10−6m2/s, respectively. The former extends from y = 0 to y = 1m and the latter
from y = 1m to y = L = 21m. The interface Γ is located at y = Ls = 1m.
A convective term corresponding to v = 9.98−11m/s in y direction has been
switched on. The surface at y = 0 is kept at constant temperature T = 1, while
all the other surfaces are considered as adiabatic. The initial condition is given
by: T (x, 0) = 1 if x ∈ [STR] and T (x, 0) = 0 anywhere else. Hence an the
initial distribution yields an apparent infinite diffusive flux at y = 1. The coupled
problem STR-FTR is assembled into a unique linear system of equations. The STR
has one sub-domain with its boundary discretised into 182 linear discontinuous
triangles. The FTR is decomposed into 539 sub-domains, each sub-domain is a
linear discontinuous tetrahedron like the ones employed by the FEM. Figure 2(a)
shows the meshed slab of the two regions.

A

A

�����
�����
�����
�����

�����
�����
�����
�����

Section A−A

1m

1m

y=0

1m 20m

STR FTR

Figure 2: Dimensions of the test example, and 3D mesh of the model.

The volume mesh (involving 282 geometrical nodes was created with a FEM-
like mesh generator [12, 13] based on the advance frontal method [14]. The
derivatives of the DRM matrix F were used in order to compute the gradient of
the temperature for the FTR region: ∂T (x)/∂xp|xi

=
∑N+4

j=1 ∂fj(x)/∂xp|xi
αj
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where the summation extends over the total number of RBFs associated to a given
sub-domain (see [11] for more details). In the case of linear tetrahedrons there
are three discontinuous freedom nodes per element, therefore N = 12, and the F
matrix in the DRM has dimensions of 16 × 16. The solution for the temperature
profile has been compared to a one dimensional Eulerian FVM reference code,
based on cell-center formulation with MacCormak time integration scheme and
constant time step. The convective term is calculated with an upwind discretisation
scheme and the diffusive term with centered differences. The temperature profiles
obtained with the SAM compared to the reference FVM along y coordinate at time
levels tA = 0s, tB = 5 × 103s and tC = 5 × 104s are shown in Fig. 3. The time
step for the SAM δt = 5× 103s was kept constant along the time iterations. Good
agreement is being observed between both results.
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Semianalytical  3D

Figure 3: Temperature profile along the test slab in the STR(left) and FTR(right)
regions at different time levels.

6 Conclusions

A hybrid semi-analytical approach coupled to the DRBEM for solving the early
stage of 3D time dependent heat transport problems in non-homogeneous media
has been proposed and tested with a simple 3D example involving a large aspect
ratio composite body. The approach is suitable for 3D heat transfer problems
dominated by diffusion, and of particular use when the initial distribution of
temperature presents a discontinuous jump at the interface between two regions
whose diffusivity constants differ in many orders of magnitude. By means of
a semi-analytical profile, a linear equation that relates the temperature with its
normal flux has been derived. In a block regarded as a sub-domain of low
diffusivity in comparison with the surrounding media, this relation leads to two
matrices which play the same role as the matrices resulting from the single and
double layer integrals in the BEM, but with only one non-zero coefficient per row,
respectively. Hence, they can be easily coupled to conventional BEM systems of
equations in order to solve more complex geometrical situations.
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