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Abstract 

This article presents a novel approach to the identification of stress states in 
statically determined bodies. The approach is based on the stress trajectory 
concept and therefore it is referred to as the stress trajectories element method, 
(STEM). Three different variants of STEM are presented and some problems 
associated with these are posed. 
Keywords:  boundary value problems, stress trajectories, numerical methods. 

1 Introduction 

This article is an introduction to a novel numerical method that is currently under 
development in Wessex Institute of Technology. The method is aimed at the 
identification of stresses in statically determined bodies by employing stress 
trajectories. 
      The concept of stress trajectories comes from photoelasticity, therefore one 
can adopt the following definition due to Frocht [1]: Stress trajectories are curves 
the tangents to which represent the directions of one of the principal stresses at 
the points of tangency. A single stress trajectory is also called an isostatic or a 
line of principal stresses. 
     Stresses at each point inside a continuous body represent a second-rank tensor 
which components satisfy differential equations of equilibrium, DEE, and certain 
constitutive equations. The latter is of theoretical and/or experimental nature, it is 
often called “rheology”, however only statically determined bodies are 
considered in this paper. These constitute a broad class and some examples are 
found in engineering: 
 

− in elasticity, the laplacian applied to the first invariant of the stress tensor 
should vanish (if body forces are neglected);  
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− in ideal plasticity, the deviator of the stress tensor is a constant;  
− in granular medium, certain linear relationships between the mean stresses 

and the stress deviator should be fulfilled;  
− in rock mechanics non-linear relationships are frequently used.  
 

     Classical formulations of boundary value problems, BVPs, for a statically 
determined body include boundary conditions, BCs, posed in terms of stresses 
(or other quantities that can be related to stresses one-to-one) on the whole 
boundary of the body while the number of boundary conditions coincides with 
the dimension of the body. Under these restrictions, BVPs are usually well-
posed, i.e. have unique and stable (with respect to small perturbations in BCs) 
solutions. The well-posed nature is vital in modern numerical techniques that 
have been well developed and implemented into computer programs such as 
finite element methods, boundary element methods, different particle codes and 
hybrid programs. However, there are a variety of ill-posed problems that are 
generally defined as problems with non-unique or unstable solutions, [2]. This 
paper deals with the problems that can be either well- or ill-posed depending on 
what information about stress trajectories is supplied. Based on theoretical 
investigations, a universal numerical method is proposed addressing the ill-posed 
formulations. Stress trajectories of different families are used to form elements 
or to introduce assumptions within the elements of chosen shapes, therefore the 
method is further referred to as the stress trajectories element method, STEM. 

2 Lame-Maxwell equations of equilibrium 

The problems considered are classified with respect to information known in 
regard to the stress trajectories that can be given: (a) everywhere in a domain; 
(b) at discrete points; or (c) on the boundary of a domain.  
     In all cases it is assumed that the domain is in equilibrium, therefore the DEE 
are valid at each point of the domain including its boundary. These can be 
presented in different forms, for instance, in the Lame-Maxwell form [3]: 
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Here σk is a principal stress along the k-th stress trajectory (isostatic), (all σk 
coincide with eigenvalues of the stress tensor), sk is a coordinate (arc length) 
along the k-th isostatic, ρji is radius of curvature of the i-th isostatic in the plane 
perpendicular to the j-th isostatic; Sk is a projection of body forces onto the k-th 
isostatic. In order to distinguish different families of the stress trajectories it is 
assumed that σ3≤σ2≤σ1. 
     For plane problems there are two independent DEE. We further focus on this 
case that demonstrate all features of the proposed techniques. If body forces are 
absent than the Lame-Maxwell equations assume the following form 
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where the curvature is found as ρk
-1=∂θk/∂sk (θk is inclination of σk in a reference 

coordinate frame). 
     Problems associated with the essentially different situations (a)-(c) are 
discussed in the next sections as well as the different variants of STEM 
associated with different data. These are summarised in Fig. 1 below. 

(a) (c)(b)(a) (c)(b)  

Figure 1: Variants of STEM for different types of data: (a) – trajectories are 
known, mesh consists of elements formed by trajectories of 
different families; (b) – data at discrete points, prescribed or 
adaptive mesh with homogeneous trajectories within elements; 
(c) – data known on the boundary, adaptive mesh with elements 

3 Stress trajectories are known everywhere in the domain 

In this case the curvatures of stress trajectories are also known everywhere in the 
domain considered. Therefore, equations (2) represent a closed system of partial 
differential equations for the determination of principal stresses. It is important 
that the knowledge of constitutive equations is unnecessary in order to obtain 
unique solution of this system. There is a routine operation very well known in 
photoelasticity, so called, separation of principal stresses, which provides 
reconstruction of the stress field on the basis of trajectory patterns. However, the 
knowledge of rheology yields an overspecified formulation. 

3.1 No constitutive equations are given 

It is evident that (2) is of hyperbolic type with characteristics coinciding with 
stress trajectories, e.g. [4]. Thus, 3 types of classical BVPs can be considered:  
− Cauchy BVP assumes BCs given on a line that is not a isostatic;  
− Goursat BVP assumes BCs given on isostatics of two different families;  
− mixed type of two above.  
All three BVPs are well known in partial differential equations. However, one 
more type has to be mentioned: BCs are posed on the boundary that coincides 

developing from boundary. 
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with the stress trajectory of one family (trajectories of the other family are 
perpendicular to the boundary). Mechanical example for this case is a body 
which surface is subjected to normal load only (no shear stress). It is clear that 
different distributions of normal loads on the boundary produce different 
trajectory patterns within the domain and therefore solutions may exist. For any 
linear cases (e.g. elasticity) it is also evident that the pattern remains the same if 
one multiplies the stress magnitudes on the boundary by a non-zero number, 
which indicates non-uniqueness. Thus, investigation of solvability and 
uniqueness is one of the tasks of the BVP of this type. 

3.2 Trajectories are known with constitutive equations 

When trajectories are known together with rheology, this results in overspecified 
system of equations. For instance, the following constitutive equations should be 
fulfilled for common rheologies  
 0)(:elasticity 21 =σ+σ∆   (3) 
 yτ=σ−σ 2:plasticityideal 21  (4) 
 1 2 1 2 1 2granular media: ( ) tan , 0cσ σ σ σ φ τ σ σ− + + = + ≤  (5) 
Here ∆ is laplacian, τy is yielding limit, φ is frictional angle and τc is cohesion.  
For instance, in the case of elasticity equations and (2) and (3) provide 
uniqueness of the stress field if boundary tractions are specified. Therefore, 
stress trajectories found from the solution are uniquely determined but they may 
differ from the given ones.  Although in general the problem has no solution, this 
example poses certain questions regarding consistency of trajectories and 
rheology, for instance, as follows:  
− determine stresses in the body including its boundary provided that rheology 

and trajectories are consistent; 
− given a trajectory pattern, determine whether it can be realised in a body of 

given rheology with certain restrictions (e.g., boundedness of stresses); 
− determine types of trajectory patterns that are consistent with different 

rheologies. 
Consistency in the case of elasticity has been investigated by Mukhamediev and 
Galybin [5, 6] who proved that with the exception of some special cases the 
complete stress tensor is reconstructed from stress orientations non-uniquely. 
However, the degree of non-uniqueness is determined. Thus, the solution for the 
2D stress deviator can have a multiplier that is either a constant (if no restrictions 
on stress trajectories are imposed) or a real valued bi-holomorphic function (if 
the angle of inclination of the stress orientations is a harmonic function of 
coordinates, in this case 5 real constants are arbitrary). 

3.3 Homogeneous trajectories 

Let us consider the case of homogeneous trajectories that seems to be consistent 
with all rheologies at least with those mentioned above. In fact, due to ρk=∞ the 
general solution of (2) takes the form σ1=σ1(s2), σ2=σ2(s1), and hence either of 
the conditions (3)-(5) can be satisfied by proper choice of arbitrary functions 
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σ1(s2) and σ2(s1). However, classes of possible stress fields related to 
homogeneous trajectories are narrow. In elasticity the only allowable stress fields 
have the form  

  edsasscbsass ++−=σ++=σ 1
2
1122

2
221 )(,)(   (6) 

where a, b, c, d, e are arbitrary real constants. For the cases of ideal plasticity and 
granular media the difference σ1-σ2 is a specific constant, hence, one arbitrary 
constant enters into the general solution that constitutes homogeneity of stresses. 

3.4 First variant of STEM 

When trajectories and rheology are consistent, the problem of stress 
determination inside the body is the primary task. It is not a BVP, and, as evident 
from the example for homogeneous trajectories, solution of this problem is non-
unique in the general case but depends linearly on a number of arbitrary 
constants. This circumstance leads to the idea of introduction of a numerical 
method that is somewhat similar to FEM but with the mesh composed of 
elements bounded by trajectories of different families, Fig.1a. In this case, two 
unknown principal stresses (functions σ1 and σ2) should be determined within 
each element. Approximation of these functions within elements should be 
consistent with rheology, which, similarly to the example for homogeneous 
trajectories, imposes certain forms of approximations that depend on sought 
parameters (e.g. coefficients of approximation polynomials). Furthermore, it is 
evident that other restrictions, e.g. continuity of principal stresses across adjacent 
elements, decrease the number of independent parameters that have to be 
determined. On one hand, a certain number of parameters will remain 
undetermined until additional data are attracted, e.g. stresses magnitudes at 
discrete points. On the other hand, this approach addresses the ill-posed nature of 
the problem and allows one to determine the number of conditions that has to be 
additionally imposed in order to find a unique stress field. It has been 
emphasised that the problem in this formulation is not a BVP, which means that 
BCs cannot be specified independently on each element of the boundary. In 
particular, this also means that none of existing numerical methods (neither FEM 
nor BEM) are capable of solving the problems with given stress trajectories. 

4 Stress orientations are known at discrete points 

4.1 Global reconstruction of stresses from discrete stress orientations 

A typical approach in this case assumes interpolation using different methods. 
Examples are found in geophysical applications, e.g. [7–10]. The major defect of 
this approach is that the pattern of stress trajectories obtained by interpolation is 
not necessarily consistent with rheology introduced when one attempts to 
recover the complete stress tensor. Moreover, different interpolation techniques 
apparently lead to different rheologies; therefore, the choice of interpolation 
methods may be in conflict with physical meaning.  
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     Consistent approaches have to take rheology into account at the stage of 
interpolation by employing the Trefftz method. This means that a global solution 
for the whole domain is sough as a linear combination of independent functions 
satisfying the governing equations. The problem appears to be a minimisation 
problem in which calculated stress orientations provide the best fit to data. Its 
solution is non-unique: although stress trajectories can be found uniquely, stress 
magnitudes are determined with some degree of arbitrariness. This approach has 
been suggested in [11–13] and tested for plane elasticity. 

4.2 Problems to be investigated  

4.2.1 Singular (isotropic) points in stress trajectory fields 
If orientations of principal stresses (principal directions) are known at a dense 
net of nodes inside the domain, a smooth field of stress trajectories could be 
obtained by standard interpolation methods (with possible inconsistence with 
rheology as explained in the previous subsection). However, the direct 
conversion can be significantly complicated by the presence of singular points 
where the stress deviator vanishes and stress orientations are unidentified 
(σ1=σ2), which suggests the lack of smoothness of the trajectory field. It is a 
serious obstacle for STEM development. The existence of singular points is well 
known in photoelasticity (where they are referred to as isotropic points), also 
numerical calculations of stress trajectories shows the presence of these points in 
different configurations, see recent results of experimental and numerical 
investigations by Joussineaua et al [14]. Two types of isotropic points are usually 
distinguished in photoelasticity although the existence of isotropic points of 
higher order is theoretically possible [15]. These points can be classified in 
accordance with the asymptotic behaviour of the stress deviator function [16]. 
Both these types may appear simultaneously.  
     The identification of singular points is a separate task that requires special 
attention. As far as elastic domains are concerned the problem of stress tensor 
identification from discrete principal orientations can be solved simultaneously 
with the problem of trajectory field identification. Moreover, the singular points 
of different types can also be found simultaneously, see examples presented 
in [11], which demonstrate that for elastic medium all types of singular points 
(interlocking type, non-interlocking type [15] and points where stresses have 
infinite gradient) can be recovered with sufficient accuracy.  

4.2.2 Other problems 
Apart from singular points the following main problems should be addressed: 
− investigation of correspondence between interpolation methods and 

rheology; 
− data analysis for the determination of optimal number and types of basis 

functions in particular cases; 
− stability of solutions for different basis functions; 
− arbitrariness in the stress tensor for different rheologies; 
− development of a variant of the STEM method. 
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4.3 Second variant of STEM 

A possible approach to the latter problem is demonstrated in Fig 1(b). Given that 
stress orientations are more or less uniformly distributed within the body, it is 
proposed to introduce such a mesh in which each element contains at least a 
datum. After that the assumption of homogeneity of stress trajectories within the 
element can be accepted, which leads to specific expressions for stresses within 
the element, e.g. (3) for the case of elasticity. Therefore, the total number of 
parameters to be determined is equal to the number of elements times the number 
of parameters specific for each rheology. However, the number of independent 
parameters is much less (it is found from the analysis of arbitrariness in the stress 
tensor for different rheologies), which means that additional conditions have to 
be imposed that connects parameters in adjacent elements (e.g., continuity of 
stress vector). This procedure leaves several parameters to be identified from 
additional data and all comments made for the STEM in the case of known 
trajectories remain. 
     It is, however, impossible to provide continuity of all stress components. At 
least one of the stress characteristics may be discontinuous across boundaries of 
adjacent elements. This is a consequence of the introduction of sharp corners in 
trajectories. For homogeneous domains, continuity of stresses can be prescribed 
in average or at the vertices of the elements; what assumption is better has to be 
investigated. In piecewise homogeneous domains the jump of tangential stresses 
on the interfaces is not zero, therefore if trajectories kink an interface the 
principal stresses also suffer jumps across the interface satisfying the following 
conditions (continuity of the stress vector) 

 
−−−−−+++++

±±−−−+++

θσ−σ+σ+σ=θσ−σ+σ+σ
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where “±” referrer to stress tensor characteristics in two adjacent elements. It 
follows from the first expression in (7) that the angles θ+ and θ− have the same 
sign (-π/2<θ≤π/2). Fig 2 illustrates admissible and non-admissible trajectories in 
two adjacent elements with a common rectilinear interface. 
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Figure 2: Examples of non-admissible (a) and admissible (b)-(c) stress 
trajectories of one family. 
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5 Stress orientations given on the boundary 

5.1 Non-uniqueness of solutions 

It is evident that orientations of principal stresses remain if any constant mean 
stress is superimposed on a particular solution of DEE or if the stress deviator is 
multiplied by any positive constant (equilibrium also remains). This indicates 
non-uniqueness in the BVP formulated in terms of given principal directions (of 
the stress tensor) on the boundary. However the number of possible solutions is 
finite if this BC is complemented by an additional BC, say by continuity of the 
stress vector. One type of BC for plane elastic body has been investigated in 
[17], where the curvatures of stress trajectories have been used as the second 
condition. It has been shown that this BVP can have finite number of linearly 
independent solutions (stress states) or have no solutions, which depends on, so-
called, index of the problem that is determined from the analysis of the principal 
directions on the boundary (curvatures of stress trajectories do not affect the 
index). The number of solutions is uniquely identified by the index, which 
suggests that the use of other types of the second BC will not make the problem 
well-posed. This hypothesis has to be thoroughly investigated by analysing 
different BCs for different rheologies. 

5.2 Third variant of STEM 

Another major task assumes the formulation of a variant of the STEM method 
for different BVPs. An adaptive mesh with elements developing from the 
boundary (Fig.1(c)) seems to be the best option because at each step directed 
inwards the stress orientations are known, therefore trajectories are approximated 
by tangents, which eventually lead to a piecewise linear system of stress 
trajectories within the body. As has been mentioned, non-uniqueness and 
possible instability of solutions considerably restricts the direct application of 
conventional numerical methods (as FEM or BEM). In the STEM approach the 
investigation of stability is amongst the major tasks. 

5.3 Applications 

Geophysical applications include determination of stresses in stable blocks of the 
earth’s crust. Here BVPs formulated in terms of stress orientations are of great 
significance. Stress orientations around the globe are always known near margins 
of tectonic plates, while data within some plates are limited. For instance, in 
Antarctic plate stress orientations are mostly known on its boundary, which 
makes application of conventional back analysis for the identification of tectonic 
stresses in this plate impossible. However, it has been reported [12] that the 
approach based on the Trefftz method for complex potentials in elasticity 
followed by minimisation technique provides stable results in reconstruction of 
the stress trajectories within Antarctica.  
     A numerical example for the identification of possible elastic fields within the 
Antarctic plate is shown in Fig. 3. Data include 170 stress orientation 
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measurements shown by segments in Fig. 1(a) (supplied by the WSM project). 
Continuity of tractions across the boundary have been assumed. 

(a) (b)(a) (b)  
Figure 3: Elastic stresses in the Antarctic plate: stress trajectories (a) and 

normalised maximum shear stress (b). 

     There are cases when direct data on stress measurements are unavailable at 
all, for instance, in crusts of other planets, although investigation of stresses is 
significant for modelling tectonics, e.g. [18–19]. The only reliable information in 
these cases is obtained from observations of fracture patterns on the surface. This 
can be used as an input to identify the orientations of principal stresses, which 
eventually will lead to mathematical formulations in terms of principal 
orientations.  
     At small scales there is a strong influence of measuring devises, 
e.g. indenters. Therefore the development of non-direct methods for small-scale 
measurements is also vital as for remote stress field determination mentioned 
above. 

6 Conclusive remarks and summary 

This article presents main tasks in the programme for the development of the 
STEM for stress identification in statically determined bodies. Different variants 
of STEM are proposed addressing three main types of data. The summary of the 
problems is presented below. 
 

Case 1. Stress trajectories known on boundary with 
Unknown Rheology: BVPs for hyperbolic DEE (Cauchy, Goursat, mixed and 
non-classical) 
Given Rheology: overspecified problems, consistency of rheology and 
trajectories, investigation of solvability. 
Case 2. Stress trajectories known at discrete points with given rheology: ill-
posed and minimisation problems (not a BVP), no uniqueness. 
Case 3. Stress trajectories known everywhere in domain with given rheology: 
extra BC required, ill-posed BVP with non-unique solutions (solvability depends 
upon the index that can be determined from BCs). 
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