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Abstract 

In this paper, a time dependent (dynamical equilibrium) free hexagon DEM is 
formulated and solved. The main application is found in geomechanics, namely 
in bumps occurrence in deep mines. The time factor is included in a natural way 
in the model of discrete elements created by the boundary element method. One 
of the most important phenomena is the velocity of excavation. In the deep 
mines the method of depositing packs and its mechanical properties are also 
decisive. Their mutual coupling can principally influence the safety against 
bumps. For a correct understanding of the behavior of the rock aggregate (coal 
seam vs. overburden), the nucleation of cracks finally leading to bumps has to be 
treated as time dependent, while so far it was observed only from statical 
equilibrium. According to new experiments and results from accessible 
literature, a dynamical effect has to be included in thr formulation.   
     Contact problems leading to bumps occurrence in deep mines have been 
solved in many of the papers of the present author for the static case. Either 
Lagrangian multipliers or penalty formulation were used. The new formulation 
has to be submitted in terms of a penalty, which if high enough (bond effect of 
adjacent elements) suppresses the influence of time. By including the interface 
properties with the lumped inertia mass of the elements, complex nucleation can 
be studied and the information on possible rock bursts is improved. From some 
examples it was shown in the static case that the behavior at the face of longwall 
mining is close to that near the crack tip, and the differences in material 
properties of coal and overburden are also not negligible. These factors are also 
expected to be important in the case of dynamic problems. Some examples show 
the application of the procedure proposed. 
Keywords: discrete element method, boundary element method, dynamical 
equilibrium. 
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1 Introduction 

In this paper we discuss a possible solution of the stability of side walls for 
longwall mining in deep mines. Two phase medium is modeled: rock mass 
compresses a coal seam, which is positioned at a depth exceeding 700 m.  
     Numerical methods seem to be the cheapest tool for assessing different types 
of structures. In the case of the description of underground massif often PFC 
(particle flow code) [1, 2], is used, which has a long lasting tradition, but for 
prediction of rock bumps it is a very poor tool. This is caused by the fact that the 
PFC starts with dynamical equilibrium so that the process described by the PFC 
is dynamic, which is in contradiction with the real behavior of the rock before 
bumps occurrence. Moreover, only a one-point touch of adjacent elements 
cannot describe the true distribution on element boundary displacements and 
tractions needed for description of continuum. From these considerations it 
follows that prediction by the PFC has a very poor chance in planning longwall 
mining. 
     If the theory of damage should be involved into formulation of the problem to 
be solved, special treatment is required using continuous methods (FEM, BEM, 
etc.). The methods, which are extensively used, start with realization of the trial 
body as a continuum. Named here “Cohesive zone method” [3], “Manifold 
method” [4–6], for example, which deal with Barenblatt’s theory. In the problem 
of rock bursts such methods are on one side uneasy applicable and on the other 
side exhibit unreal behavior, according to a couple of test examples. “Smooth 
Hydrodynamics Method” [7] seems more promising, but problems occur with 
introducing general boundary conditions 
     This is why test experiments have been carried out to get knowledge about a 
reasonable approach for solving the problem. One of a possible experimental 
treatment was suggested in paper [8], where Araldit and physically similar 
materials are used. Based on models of such a similarity conception coupled 
modeling was used in [9–11]. In [9] rock bursts are studied in mines at extreme 
depths. The free hexagon method is used to determine the bumps state in the 
rock. In [10] a similar problem is solved for more general cases occurring during 
mining. In [11] tunnel face stability is assessed. The scale model used in this 
paper is prepared in collaboration with Muenchen University; Lippman was the 
coordinator together with J. Vacek.  
     In [12–14] results from on site measurements are published, 
recommendations are provided on how to proceed in determining the rock bursts 
and, what is the most important to us, the way of movement is shown in these 
publications. 
     The free hexagon method seems to be one being very promising, as the result 
from experiments and numerical models are reasonably comparable. The static 
equilibrium was used in formulation of the free hexagon method. This method 
has been established in the middle of 90-ties and the fundaments can be found in 
[15, 16]. In [17] the method is applied to the stability of a tunnel face. The 
nucleation of cracking is observed at the face, but no larger displacements were 
calculated; only the failure state was determined. A concise formulation of two 
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methods, static PFC and the free hexagon method, is published in [16] together 
with couple of applications to various geotechnical problems. 
     In this paper interface between statical and dynamical states before and at the 
moment of bumps is characterized. First, the method will be described and basic 
formulas will be derived, and then some applications to rock bumps will be 
presented. Time-dependent problem with the D’Alembert forces, which are 
caused by contact forces of moving particles, simplifies the body of the earth 
(soil) to a set of hexagons, which are, or are not in mutual contact. The material 
properties of the hexagons are determined from the state of stresses. The 
hexagons represent a possible shape of grains the earth consists of. The model 
proposed in this paper may, contrary to modern numerical methods (FEM, BEM, 
etc.), enables one to disconnect the medium described by the hexagons, when 
needed (e.g. providing certain requirement on tensile strength is violated). The 
most natural contact conditions (Mohr-Coulomb hypotheses) may be simply 
introduced and, after imposing all such of those contact conditions, the localized 
damage, or “cracking” can be found out. The stability then depends on the 
“measure” of the touched zone. 
     Mechanical behavior inside each element is either linear or non-linear 
(plastic, viscoelastic, viscoplastic, etc). To describe such behavior, boundary 
elements are applied. In some papers FEM is used, which causes far more 
difficulties then the BEM, see, e.g., [17], where tractions are by one degree of 
polynomials lesser then displacements, although along the boundary abscissas 
linear relation traction x displacement holds. This is in contradiction with the 
assertion that along the adjacent boundaries of the elements the tractions and the 
displacements have the same degree of approximations (splines). On the other 
hand, it is typically fulfilled when using the BEM that the element boundary 
displacements and tractions are of the same degree of approximation.      
     A typical coupled modeling (mathematical and experimental) is published 
in [18]. In the latter publication the experimental models are based on scale 
modeling and created from physically equivalent materials. In our case similar 
modeling is used with such an exception that very particular materials are used, 
see [7–11]. 

2 Basic assumptions 

Starting with statical equilibrium in the first stage of excavation, after 
dislocations in the rock continuum and in the coal seam that appears, time 
dependent dynamical equilibrium has to be considered. Under the assumption 
that the material properties of both rock and coal are known, hexagon elements 
are created and linear behavior in them is supposed. Since the elements are 
considered to be small enough, isotropic case is taken into account, i.e. the 
elements are homogeneous and isotropic with material characterization given by 
modulus of elasticity E and Poisson’s ratio ν , for example. Classical problem 
involving generalized Coulomb’s friction and exclusion of tensile stress 
exceeding the tensile strength along the interfaces (possible dislocations) is 
solved. Typical set up of adjacent elements is illustrated in Fig. 1. In what 
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follows the distribution of mass inside each element is neglected in such a sense 
that it is concentrated at c.o.g. of the element. Then, first the solution of elastic 
problem in an element is formulated and the element is put into the  
neighborhood of adjacent elements. Regular distribution of elements is assumed, 
i.e. only one matrix relating tractions and boundary displacements will be 
provided. 
 

 

Figure 1: Adjacent grains set up. 

3 Boundary element solution in one hexagon 

The solution of elasticity on each hexagonal elementΩ is approximated by 
concentration of DOFs to vertices of the hexagon, and distribution of boundary 
displacements and tractions along edges 6,...,1, =ssΓ  of the hexagonΩ is 
assumed to be linear. Then, generally, integral equations formulate the problem: 
 

xξxxxξxxxξxxξ d ),()(d ),()(d ),()()( *** ∫∫∫ +−=
ΩΓΓ

ikiikiikikik ubpuupuc
ss

   (1) 

where i and k run 1,2, and s = 1,…,6. In case of regular element distribution is 
considered, ikδ  is Kronecker’s delta.  In case the regular hexagons are used and 

linear distribution of both displacements and tractions is used, ikikc δ3
1= , and 

then 
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while for uniform distribution of both geometrical and statical characterizations 
along the boundaries we get  
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                  k = 1, 2,  s  = 1,…,6,     

Formula (1b) is used in this text, i.e. uniform distribution is applied. Knowing 
the form of kernels denoted by asterisk and substituting approximations for 
boundary displacements and tractions, matrix equations are obtained: 
 

VpKubBpAu +=+=                ,                                (2) 
 

where A , B  and K are square matrices (12 *12), u is the vector of displacement 
approximations at vertices, p  that of tractions and b and V are vectors of 
volume weight influences. The latter are vectors (1*12).  

4 Statical contact conditions  

Let us consider two hexagons being in possible contact, see Fig. 2. Introduce a 
pseudo-cone K, which is defined as: 
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where 12][ nnn uuu −=  , 12][ ttt uuu −= , u  is split into normal nu and tangential 
(shear) tu components, n  is unit outward normal with respect to element 1, V is 
admissible space of displacements, traction p  has now components },{ tn pp , 

i.e. projections to normal and tangential directions, +
np is the tensile strength, c is 

the cohesion or shear strength, and φ is the angle of internal friction of the 
material (rock, coal), κ is the Heaviside function being equal to one for positive 
arguments and zero otherwise. Here strict sign convention is used: positive sign 
is tension, while negative one means compression. The pseudo-cone K becomes 
a cone for 0=+

np and frictionless case.  

 
Figure 2: Two hexagons in possible contact. 
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5 Fischera’s conditions 

Fischera’s conditions have been formerly formulated for K being a cone. In our 
case the conditions in normal direction can be written as: 
 

( ) 0,n n n np p p pκ+ + − − ≥  0][ ≥nu , { ( ) }[ ] 0,n n n n np p p p uκ+ + − − =           (4) 
 
Similarly, in the tangential direction it holds: 
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The energy of the system can be stored as:  
 

   −−−−−= ++

==
∑ ∫∫∑ xxupuu d ][})(){(d ),(

2
1

1

T

1

ββββ

β ΓΓ
α

α

κΠ
β

nnnnn

nN

uppppa  

        (6) 

                 d |][||}|tan   )  ( {
!

xβββββ

Γβ

φκ
β

ttnnn

n

upp-p-pc −− +

=
∫∑  

where α  runs over all hexagon elements, α = 1,…,N , β runs all contact edges 
of possible contacts βΓ , n1,...,=β , Γ is the external boundary where p is 
prescribed, and  
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is the internal energy (bilinear form) inside a hexagon αΩ ,  , αα εσ are 
respectively stresses and strains in αΩ .  

6 Penalty formulation 

Setting ,][ nnn ukp =  ttt ukp ][= , where tn kk , are normal spring and tangential 
spring stiffnesses, and substituting these expressions in (6) yields 
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7 Dynamical response 

If each hexagonal element is considered small enough, lump mass dynamical 
problem can be formulated according to Fig. 2, where for the sake of simplicity 
the influence of rotation is neglected. Suppose the element 1 possesses a stable 
position, then element 2 will obey differential equation 
 

nn uwwkw
t

m ][            , 0
d
d

2

2
==+                                        (9) 

 
where m is a mass of the element 1, measured in kg. From the latter equation 
immediately follows that if  nk  is large the inertia forces are suppressed and in 
each small enough time step no dynamical influence occurs. This assertion will 
be précised in the next text. The solution of latter equation is known as: 
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where 01 tth −= is the time step,  01100   ),( ),( ttwwtww == is the initial time,  1t  
is the time in the next time step. At the middle of the time interval, the value of 
displacement w and the first derivative by time t are derived as: 
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From equations (10) and (11) it follows an important bound estimate on the time 

step h: 
nk

mh
2
π

≤ . The only troublesome point remains for 0→nk . Then 

linear relation follows from the governing equation and, consequently, the 
velocity is constant. This is in compliance with the D’Alembert law. The last 
inequality leads us also to the fact that in case of large penalty nk  no differences 
in displacements can be expected due to inertia forces.  
     Using well known approximation formula for second derivative and the above 
approximate formulas we get:  
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which is an explicit formula for calculating )1( =ξw . Using vector projection to 
the coordinates system, resulting movement is received. At the moment the c.o.g. 
of the element is then moved assuming the deformed body as rigid. 
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8 Examples 

A study of a longwall mine has been carried out. Material coefficients of the rock 
massif Ω have the following values: E = 52 500 MPa, ν = 0.29, the peak values 
Ep = 38 000 MPa, and νp = 0.38, the residual values Er = 5 000 MPa, the angle of 
internal friction is 42 degrees, its residual value is 32 degrees, the shear strength 
c = 0.9 MPa and its residual value is considered as 0.4 MPa. The coal seam is 
brittle, with E = 5 500 MPa, ν = 0.39, the angle of internal friction and the shear 
strength vary. In Fig. 3 setting of hexagonal elements is seen, Figs. 4 and 5 
display the movements at t = 0.1 sec, h = 0.001 sec, i.e. the starting spring 
stiffness kn is derived as 1010. 
 
 
 

 

Figure 3: Setting of the hexagonal elements. 

 
 
 

 

Figure 4: Movements for c = 100 kPa and +
np  = 10 kPa. 
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Figure 5: Movements of the particles for c = 10 kPa and +
np  = 25 kPa 

9 Conclusions 

Dynamical behavior of the face of a coal seam at the moment of rock burst and 
closely after it is studied in this paper. In comparison with the PFC we start with 
a different shape of particles (to have the possibility to also get stresses in the 
particles) and with static equilibrium in the state when no bumps occur. After 
nucleation of cracks, or in other words if small movements are observed, the 
kinetics of the moved particles is considered. The inertia part of the governing 
equation starts to prevail and be active. Generally, in contradiction with the PFC 
dynamical equilibrium is taken into consideration after enough movement of the 
hexagonal elements. The forces induced along the boundaries of adjacent 
particles or after mutual touching of extruded particles cause an acceleration of 
the particles, which defines the way of movement due to D’Alembert forces. 
Influence of spring stiffness stabilizes the iterative process. If removed, the 
process can degenerate in unstable convergence of diverge at all.   
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