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Abstract 

We find solutions to 2 0U∇ = in a simply-connected 2-D domain D, using a 
continuous line source associated with a concentration function comprising n 
undetermined parameters. This choice reduces ill-conditioning effects by 
reducing the number of parameters involved. The choice of a continuous circular 
line source C around D follows from previous results indicating that, when 
solving the same problem with discrete point sources, the result is independent of 
precise placement of sources. The circle is associated with a concentration 
function that is constrained to satisfy the problem’s boundary conditions. 
Accuracy is achievable using a number of parameters which, had discrete 
sources been used, would be insufficient to represent the geometry of D, thus 
giving inaccurate results. Empirical investigations with various forms of 
concentration function show that with some domains, the error in calculated 
values of U can be less than 0.1%: an order of magnitude improvement over 
discrete methods. More complex domains yield less accuracy, and, after testing 
on a range of domains, we formulate an empirical rule for an appropriate form 
for the concentration function for a generic domain. Code requiring high-
precision arithmetic was developed in Mathematica, which also simplifies 
routine tasks of solving linear systems and integrations. 

1 Introduction 

Previous research has shown that when using meshless discrete sources in the 
MFS, the configuration of sources relative to the domain D is extremely flexible. 
In [1] we showed that, within certain limits, the source distribution can be 
random, and in [2] we showed that sources “at infinity” (i.e. a large distance 
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from D compared to the size of D) can produce very accurate results for the 
simple domain discussed in this paper. Fam’s study [4] confirmed our findings 
on source distributions near D, using extensions of the MFS. Studies [1, 2, 4] 
show that previous attempts to analyse meshless source distributions are 
incorrect. For example, Alves [3], in an analysis of Poisson equations, considers 
a ‘natural’ radius for a circular distribution of discrete sources of “5~10 times the 
diameter of D” (without any precise definition for the term ‘diameter’ for a non-
circular domain).  We claim, using [1, 2], that a ‘natural’ radius is infinite, and 
reiterate that view from the results of this paper. Alves says that ill-conditioning 
problems preclude the use of very large radii, but we use Mathematica to analyse 
potential problems with sources at arbitrary distances from D without significant 
ill-conditioning.  

2 The continuous line source method 

For discrete point sources Sj exterior to a domain D, the potential U(m) at a point 
m in D or on the boundary of D is given by      

( ) ( )*
j j

j

U m U S c=∑              (1) 

where U* is the fundamental solution at Sj with respect to m and the cj are 
undetermined coefficients.  Figure 1 shows such a domain D (with boundary D∂  
and interior point ( ),m x y ) in which the point sources have been replaced by a 
continuous circular line source with constant radius R, of which AB is an arc.  
This circular source has an associated concentration function ( ),c θ c  

(abbreviated to ( )c θ ), where the parameter θ  is the angle shown in Figure 1 
and c is a vector of n undetermined coefficients.   
 

 

Figure 1: Circular source and domain. 
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     The continuous equivalent of eqn. (1) is derived by considering the potential 
dU due to the infinitesimal line source Sθ  on the arc AB, on which it is assumed 
that ( )c θ  is approximately constant. Assuming throughout that the Origin O is 
in the interior of D.and that that m is not at O, 

( ) ( ) ( )*,dU m U S c dθθ θ θ=                       (2) 
Hence the total potential at m due to the whole circular source is  

( ) ( ) ( ) ( ) ( )
2 2

*

0 0

ln
  

2
r

U m U S c d c d
π π

θ θ θ θ θ
π

= =∫ ∫ ,            (3) 

where                   ( )( ) ( )( )2 22 cos sinr R x R yθ θ= − + −            (4)

 
     Similarly the flux ( )Q m  at m due the entire circular source is given by 

( ) ( ) ( ) ( )
2 2

*

0 0

1  
2

x x y yn r n r
Q m Q S c d c d

r r

π π

θ θ θ θ θ
π

+
= =∫ ∫             (5) 

where ( ) ( )cos , sinx yr R x r R yθ θ= − = −  and (nx , ny) are direction cosines at m. 
 
     In the case where m is at O, eqn (3) simplifies to 

( ) ( ) ( )
2

0

ln
2

R
U m c d

π

θ θ
π

= ∫               (6) 

and eqn (5) simplifies to 

( ) ( ) ( )( ) ( )
2

0

1 cos sin  
2 x yQ m n n c d

R

π

θ θ θ θ
π

= +∫ .                   (7) 

 
Our method then proceeds by discretising D∂  and setting up a set of linear 
equations based on known potentials on D∂ . Let ( )0 1 1, , , Nm m m −=m "  be a 
vector of the midpoints of N boundary elements on D∂ with corresponding 
known boundary values (either potential or flux) ( )0 1 1, , , Nb b b −=b " . For each 
element of m in turn we use one of eqns (3, 5) (depending on whether the 
relevant boundary condition is a known potential or flux) to obtain a system of  
linear equations in the undetermined parameters c for ( )c θ . This gives a matrix 
equation 
 Mc = b            (8)
where the coefficients of M come from one of eqns (3,5).  Mathematica provides 
a convenient inversion for M using its pseudo-inverse, and this accounts for 
over-determined systems and can be done to arbitrary precision (within the limits 
of computer memory).  Thus we can obtain a relatively accurate approximation 
c  for c: 

c  = PseudoInverse[M] b.              (9) 
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The potential and flux at an interior or boundary point p can then be calculated 
from any one of eqns (3,5,6,7), depending on whether a flux or potential is 
required and whether p is at the Origin or not, using the known elements of c  in 
the integrals involving ( )c θ . 

2.1 Choice of concentration function 

Choosing a concentration function involves finding suitable linearly independent 
basis functions, and a subjective judgement about the number of undetermined 
parameters involved.  On balance we have found that there is rarely much to be 
gained by choosing over-complicated basis functions, since simple polynomials 
suffice in all the cases we have tried. The numbers of undetermined parameters is 
more of a problem. Choosing too few cannot reflect the domain geometry 
accurately, and often gives completely wrong solutions. Choosing too many 
often has little effect but produces a progressive loss of accuracy due to ill-
conditioning.  In some cases this loss of accuracy is significant. 
     The only other constraint on the concentration function is a continuity 
condition ( ) ( )0 2c c π= . Collocation polynomials satisfying this continuity 
condition and evaluating to the undetermined parameter ci of c at ordinates i 
initially produced promising results in simple rectangular domains, even with 
high values of n (>30). But for more complex domains, either ill-conditioning or 
a rapidly oscillating function (or both) gave less accurate results. Hence we 
concentrated on piecewise linear functions only. The n-parameter continuous 
piecewise linear function pwlin, is defined in eqn (10).  
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 (10) 

 
This set of concentration functions is useful because the integrals in matrix M in 
eqn (8) are simple for all values of n (although it’s technically harder to define 
their domains correctly). No assumption are made about placement of the cr. 
This fact, and the results using piecewise linear concentration functions, 
effectively counter Poullikkis’s assertion [7], that point sources must be placed 
uniformly at a fixed distance from the boundary. 

2.2 Conjectures on parameters of the concentration function 

In the examples that follow, it is apparent that in some cases the choice of 
parameters of the concentration function matters very little, whereas in other 
cases it matters a great deal.  We aim to determine whether or not it is possible to 
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find general results for the number and position of the parameters of the 
concentration function which are independent of the domain.  If this can be done, 
our method can become a generic method to solve any potential problem 

2 0U∇ = in any D subject to boundary conditions on D∂ . Trials from this study 
and results from [1] and [9] suggest that, given the definition for Nominal Radius 
of the domain, NR[D], in section 2.2.1,  we should consider placing the enclosing 
circle  either ‘at infinity’ or between 10 and 20 times NR[D]. Furthermore, the 
number of concentration function parameters should be a simple function of the 
number of boundary elements on the convex and concave parts of the discretised 
boundary. . 

2.2.1 Definition: Nominal Radius 
For a simply-connected domain D, the Nominal Radius of D, denoted by NR[D] 
is half of the maximum (straight line) distance between pairs of points on D∂ .   

 [ ] ( )
,

1 sup
2 x y D

NR D x y
∈∂

= −     (11) 

This definition is intended to be no more than a general guideline in choosing the 
radius of the enclosing circle.  It is used to relate the circle radius to a single 
spatial characteristic of D. NR[D] is “loosely” the radius of the smallest circle 
that can be drawn around D without intersecting with the boundary of D. 

3 Convex domain example: torsion of an elliptical bar 

This is an example of torsion of a bar with an elliptical cross-section, and is 
taken from [10].  Figure 2 shows the configuration of a quarter of the domain.  
Dirichlet boundary conditions U=0 apply on the straight sides and a Neumann 

boundary condition ( )
2 2

751 ,
25 10000

xyQ x y
x y

=
+

applies on the curved side. 

 

Figure 2: Torsion of an elliptical bar. 

Brebbia and Dominguez [10] use reference points (2,2) and (4,3.5) for their 
calculations.  At these points their quadratic BEM gives U as –2.431 and –8.472 
respectively, with analytical results of –2.400 and –8.400 respectively. Table 1 
shows our results at these reference points. In this case the nominal radius for the 
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domain is ( ) 2 21 5 10 ~ 5.6
2

NR D = + . Rounded up to 6, this is the minimal 

radius that yields reasonable results The discretisation used 12 boundary 
elements, so we consider among others, 12 concentration function parameters 
(CFP). With high numbers of parameters such as these, using the collocation 
concentration function is not practical, as failure to converge is frequent, and the 
results in Table 1 are for the piecewise linear concentration function. 

Table 1:  Results for torsion of an elliptical bar. 

 
     The results in Table 1 show an improvement on the quadratic BEM 
calculations and those obtained in [1] and [9], but there appears to be a limit on 
the maximum accuracy achievable (about 0.5% in this case).  In all cases, the 
results are largely independent of the circle radius, except at a radius which is 
marginally larger than NR(D)). There is also very little dependence of the results 
on the number of parameters in the concentration function. Other purely convex 
domains yielded results of similar accuracy, with maximum errors in U and Q of 
~1%. 

4 Convex domain example: flow past a circular cylinder 

Zhang [6] provides an example of a concave domain, for which our meshless 
method needs more careful investigation. In Figure 3, fluid flows past the 
circular arc AB. U is the stream function and Q U= ∇ . There are ‘natural’ 
boundary conditions on the boundary segments OA, AB and BC, and the 
boundary conditions on CD and DO are calculated from the analytical solution, 
eqn (13) with y=2 and x=0 respectively. 

 ( )
( )22

1, 1
4

U x y
y x

= −
+ −

          (13) 

     In contrast to the number of nodes used by Zhang [6] to discretise the 
boundary (ranging from 26 to 104), we obtained similar accuracy using a crude 
discretisation with at most 20 parameters. We used 18 boundary elements: 3 on 
OA, 8 on AB, 1 on BC, 4 on CD and 2 on DO. For the following results we 

CFP 10 10 12 12 15 15 20 20 
Radius U(2,2) U(4,3.5) U(2,2) U(4,3.5) U(2,2) U(4,3.5) U(2,2) U(4,3.5) 

6 -2.0862 -6.6759 -2.0862 -6.6759 -2.2935 -8.258 -2.4444 -8.61 
50 -2.4116 -8.4406 -2.4116 -8.4406 -2.4116 -8.44053 -2.4116 -8.4406 

100 -2.4116 -8.4406 -2.4116 -8.4406 -2.4116 -8.44064 -2.4116 -8.4406 
200 -2.4116 -8.4407 -2.4116 -8.4407 -2.4117 -8.44068 -2.4116 -8.4406 
400 -2.4115 -8.4406 -2.4115 -8.4406 -2.4116 -8.44066 -2.4116 -8.4407 

1000 -2.4116 -8.4406 -2.4116 -8.4406 -2.4116 -8.44063 -2.4116 -8.4406 
5000 -2.4116 -8.4407 -2.4116 -8.4407 -2.4121 -8.44109 -2.4116 -8.4406 
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calculated the potential at a selection of the same 19 interior points as Zhang: 
( ){ }5 10, , 1 19n n n = … (equally spaced on diagonal OC in Figure 3). Table 2 gives 

summary results for these 19 reference points. The Nominal Radius is 5 : half 
the diagonal OC in Figure 3, and the column marked ‘R/NR’ shows the radius of 
the enclosing circle R as a multiple of the Nominal Radius. CFP is the number of 
Concentration function parameters and “% error” is the mean absolute 
percentage error for all 19 reference point. 
 

 

Figure 3: Fluid flow. 

Table 2:  Fluid flow. 

CFP   10 13 15 20 25 
R R/NR % error % error % error % error % error 

2.5 1.1 1.2 1.2 22.2 50.3 254.3 
10 4.5 9.5  3.6 56.6 84.0 72.3 
20 8.9 10.0 3.2 27.2 33.1 33.8 
30 13.4 10.1 3.1 4.8 31.1 28.8 
40 17.9 10.1 3.0 3.5 5.2 4.7 
50 22.4 10.1 2.9 3.4 5.2 3.5 

100 44.7 10.1 2.8 5.2 2.7 2.6 
200 89.4 10.1 6.6 6.6 6.6 6.6 
500 223.6 9.9 3.5 9.9 9.9 9.9 

1000 447.2 9.9 9.9 7.4 9.9 9.9 
  
     There is clearly a much wider variation in results than there was for the 
convex domain example. With 13 concentration function parameters (the number 
of boundary elements on the convex sides), there is some consistency of results 
for a wide range of radius. For cases where the radius is between 10 and 20 times 
the nominal radius (actual radius is roughly between 20 and 50), the mean 
relative % error is about 3%. For an “infinite” radius (R > 100), the mean relative 
% error is more than 5%, which is unacceptable.  Using a “minimal” radius only 
gives good accuracy with a careful choice for the number of concentration 
function parameters. Solving other problems with concave boundaries leads us to 
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believe that this meshless method results in ill-conditioned with respect to the 
number of concentration function parameters  
     The main source of error in the overall error measure in Table 2 is nearly 
always due to the reference point (0.2, 0.1), which is the reference point nearest 
O in Figure 3.  This point typically accounts for between 35% and 65% of the 
total error.  The next reference point (0.4, 0.2) usually accounts for a further 10% 
of the total error.    
     Table 3 shows the results of calculations of U for five reference points using 
the optimal 13 concentration function parameters.  Most results are within 2% of 
the exact values.  In this case the major source of error is the point (3.8, 1.9). 

Table 3:  Fluid flow - variation of U with radius at five reference points. 

Radius U(0.2, 0.1) U(1.0, 0.5) U(2.0, 1.0) U(3, 1.5) U(3.8, 1.9) 
2.5 0.100555 0.439841 0.802767 1.03351 1.42095 
10 0.116463 0.431713 0.802797 1.05629 1.27069 
20 0.112426 0.434135 0.801896 1.05633 1.27231 
30 0.110742 0.435021 0.801614 1.0563 1.27302 
40 0.109861 0.43547 0.801478 1.05627 1.27344 
50 0.109323 0.43574 0.801396 1.05625 1.27372 

100 0.108171 0.436266 0.80118 1.05615 1.2742 
200 0.136966 0.415435 0.819446 1.05093 1.24058 
500 0.108966 0.444447 0.821415 1.03478 1.22172 

1000 0.0081242 0.469391 0.822426 1.00444 1.31153 
        
exact 0.0930796 0.445946 0.8 1.03846 1.37945 
 
     Since the domain is theoretically infinite, we tried larger values for the 
distances CD and OD, and used the ‘natural’ approximations UCD ~ 1 and 
UOD ~ 1. We achieved slightly better accuracy than that reported in Table 3 with 
the values CD = OD =10, which this is probably a more realistic scenario than 
the boundary conditions stated in Figure 3. 

5 Boundary element requirements 

In general we have tried to use sufficient boundary elements to reflect the 
geometry of the domain and the boundary conditions, and no more. Using more 
did not improve accuracy materially in the case of convex domains. In some 
concave domains, accuracy deteriorated as the number of boundary elements 
increased. We attribute this effect to a forced high concentration density on some 
portions of the enclosing circle. 
     Hence we never needed the large number of nodes required in some other 
studies. For example, [5], needed a minimum of 72 boundary elements to 
achieve acceptable accuracy.  Liu does confirm our view that too few parameters 
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cannot model D effectively, and that too many increases ill-conditioning 
unacceptably.  Zhang [6] reports similar results.  Similarly, Fam [8] solves a 
rectangular domain problem using dipole sources. The domain boundary is 
discretised into 12 or 24 boundary points. Our solution achieved the same 
accuracy with only 8 boundary points.   

6 Conclusion 

Our distributed source method can produce accurate results for very simple 
domains and can achieve a significant reduction in the number of parameters (of 
the concentration function) required, and the necessary number of boundary 
elements. Of the two classes of concentration function considered (collocation 
and piecewise linear), the piecewise linear class allows for more concentration 
function parameters if required.  It generally gives less accurate but more reliable 
results.  We have found similar results for other simple convex domains, 
although achievable accuracy diminishes with increasing complexity of the 
domain. Within very broad limits, for convex domains, the radius of the circular 
source and the number of collocation function parameters have little impact on 
the accuracy of the calculations.   
     When the domain contains at least one concave element, the configuration of 
the enclosing circle is more stringent. In addition to the fluid flow example 
discussed here, we have considered other cases and found, with all of them, that 
optimal accuracy can only be achieved by using particular circle configurations.  
The only combination of parameters that works tolerably well in every (concave) 
case is the combination: 
 
  number of concentration function parameters =  
  number of boundary elements on the convex faces of the discretised domain;     
  
and 
 
  circular source radius = n NR(D) where 10 20n≤ ≤ . 
 
Within this parameter set, n = 10 giving marginally better results.  Using this 
combination necessarily involves some trading of accuracy for generality. We 
stress that this conclusion derives from not only the examples presented here, but 
also from additional investigation of other domains, with particular attention paid 
to concave domains. Furthermore, applying the rule suggested above may not 
give optimal accuracy in any given case. The number of boundary elements 
should be minimised: there should be sufficient to reflect the geometry of the 
domain and the boundary conditions, but no more. In particular, the combination 
“one concentration function parameter per boundary element with infinite 
radius” would have been appealing.    
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