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Abstract

In general, internal cells are required to solve elastoplastic problems using a
conventional boundary element method (BEM). However, in this case, the merit
of BEM, which is ease of data preparation, is lost. Triple-reciprocity BEM can
be used to solve two-dimensional elastoplasticity problems with a small plastic
deformation. It has been shown that three-dimensional elastoplastic problems
can be solved, without the use of internal cells, by the triple-reciprocity BEM
and initial strain method. In this study, an initial stress formulation is adopted
and the initial stress distribution is interpolated using boundary integral
equations. A new computer program was developed and applied to solving
several problems.
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1 Introduction

Elastoplastic problems can be solved by a conventional boundary element
method (BEM) using internal cells for domain integrals [1, 2]. In this case,
however, the merit of BEM, which is ease of data preparation, is lost. On the
other hand, several countermeasures have been considered. Ochiai and
Kobayashi proposed the triple-reciprocity BEM (improved multiple-reciprocity
BEM) without the use of internal cells for two-dimensional elastoplastic
problems using an initial stress and strain formulations [3]. By this method, a
highly accurate solution can be obtained using only fundamental solutions of a
low order. It has been shown by Ochiai that three-dimensional elastoplastic
problems can be solved, without the use of internal cells, by the triple-reciprocity
BEM and initial strain method.

WIT Transactions on Modelling and Simulation, Vol 44, © 2007 WIT Press
www.witpress.com, ISSN 1743-355X (on-line)
doi:10.2495/BE070031



24 Boundary Elements and Other Mesh Reduction Methods XXIX

In this study, the initial stress formulation and triple-reciprocity BEM are
adapted to three-dimensional elastoplastic problems, and new fundamental
solutions for this method are shown. In this method, only boundary elements and
internal points are used. The arbitrary distributions of the initial stress for
elastoplastic analysis are interpolated using boundary integral equations and
internal points. In this method, strong singularities in the calculation of stresses
at internal points become weak. A new computer program was developed and
applied to several elastoplastic problems to clearly understand the theory.

2 Theory

2.1 Initial stress formulation

To analyze the elastoplastic problems using the initial strain formulation, the
following boundary integral equation must be solved [1, 2].

cip(Pyi;(P) = [L[u (P, 0);(Q) = py (P,QYi; QW + [ & (P.g)a b (pa (1)

Here, 51[” is the initial stress rate and c; is the free coefficient. Moreover, u;

and p, are the j-th components of the displacement rate and the surface traction

rate, respectively. On the other hand, /" and (2 are the boundary and the domain,
respectively. As shown in Eq. (1), when there is an arbitrary initial stress rate, a
domain integral becomes necessary. Denoting the distance between the

observation point and the loading point by 7, Kelvin's solution u!! i I and p; are
given by
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where v is Poisson's ratio and G is the shear modulus. The i-th component of a
unit normal vector is denoted by n;. Moreover, let us set »,=0r/0Ox;. The function

gyk in Eq. (1) is given by [1]
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2.2 Interpolation of initial stress

Interpolation using boundary integrals is introduced to avoid the domain integral
in Eq. (1). The distribution of the initial stress ;] in the case of a three-

dimensional problem is interpolated using the integral equation to transform the

WIT Transactions on Modelling and Simulation, Vol 44, © 2007 WIT Press
www.witpress.com, ISSN 1743-355X (on-line)



Boundary Elements and Other Mesh Reduction Methods XXIX 25

domain integral into a boundary integral. The following equations are used for
interpolation [5-8]:

2 - 118 - [2]8
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where V2 =6%/ax? +6% /8y +6% /8z% . From Eqgs. (6) and (7), we obtain

M
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where the function 6'1[].3le 4 expresses a state of a uniformly distributed

polyharmonic function in a spherical region with radius 4. We must emphasize
that Egs. (6) and (7) can be used for interpolating the complicated distribution of
the initial stress c';,[;]g . These equations are the same as those used to generate a

free-form surface using an integral equation [6]. In this method, each component
of initial stress &,1}) (, k=1,2,3) is interpolated.

2.3 Representation of initial stress by integral equation

The distribution of the initial stress is represented by an integral equation. The
polyharmonic function Tm and its normal derivatives are given by

2f-3
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Figure 1 shows the shape of polyharmonic functions; the biharmonic function
71! is not smooth at 7=0. In the three-dimensional case, a smooth interpolation

cannot be obtained using solely the biharmonic function 72!, In order to obtain
a smooth interpolation, the polyharmonic function with volume distribution

7121 s introduced. A polyharmonic function with volume distribution 70/ | as
shown in Fig.1, is defined as [5]

T = [ 2747 10 sin 0 d0y d da (10)

The function 7UM can be easily obtained using the relationships
r?=R?>+a® -2aRcos® and dr=aRsin@d@, as shown in Fig.1. This function is
written using 7 instead of R, similarly to Eqgs. (8) and (9), though the function in

Eq. (10) is a function of R. The newly defined function 7114 can be explicitly
shown as
T/ :—2r(2}+1)!{(2fA—r)(r+A)2f +QMA+Ir-Dy r>4 (1)
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Figure 1: Notations for polyharmonic function with volume distribution.
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Denoting the number of points Orik 317 as M, the curvature of the initial stress rate

[2]§

Or is given by Green's second identity and Eq. (6) as [4—6]
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The initial stress rate d,% is given by Green's theorem and Egs. (5) and (6) as
[4-6]
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where ¢=0.5 on the smooth boundary and ¢=1 in the domain. It is assumed that

01[]21{15 (Q) is zero. For internal points, the next equation is obtained similarly to

Eq. (14).
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If the boundary is divided into N, constant elements, and N, internal points are
used, the simultaneous linear algebraic equations with (2N)+N;) as unknowns
must be solved.
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2.4 Triple-reciprocity boundary element method for the representation of
initial stress

The function g%] is defined as

2 L7410 _ L]
Vie jkl jkl . (16)

Using egs (5), (6) and (16) and Green's second identity, eq (1) becomes
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g%] for the representation of initial stress is obtained as [4]
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Moreover, the normal derivative 6€l 5"/ On and gljk are given by
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2.5 Internal stresses

The internal stress is given by
631(p) = [ [-05) (P.0) P4 (Q) = Sy (p. Q)i (D)L

+ [ e )5 @ -6, @), (22)
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v

where o",l.j is the initial stress obtained. The functions Sy; and aE,ﬂs in Eq. (22)
are given by
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The function 85,{,] is defined as
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Using Eq. (25) and Green's theory, Eq. (22) becomes
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Using Eq. (22) and the relationship between displacement and strain, 51%1] is

obtained as
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Similarly, del/ ki ) /on and & 3(]1‘4 are obtained as
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3 Numerical examples

In order to ensure the accuracy of the present method, the stress in a thick
cylinder, which is made of an elastoplastic material, subjected to internal
pressure is obtained. It is assumed that the inner and outer radii are 10 and
30 mm. The von Mises yield criterion is used, and the cylinder is free in the
z direction. Young’s modulus £ =210 GPa and Poisson’s ratio v=0.30 are
assumed. Internal pressure po = 1.2 GPa, yield stress oy = 1.2 GPa and strain

hardening H=0.IFE are assumed. The numbers of discretized boundary elements
and internal points are 680 and 315, as shown in Fig. 2. Internal points are used
to interpolate the distribution of initial stress. Figure 3 shows the circumferential
and radial stress distributions. Boundary element results are shown with FEM
solutions in Fig. 2. The stress distributions agree well with the FEM solutions.

Next elastoplastic problem is a notched tensile specimen which is shown in
Fig.4. This example is one of the very early plasticity problems solved using
the finite-element technique, and boundary element solutions were presented by
Telles [1]. Von Mises yield criterion and no-strain hardening is assumed. The
number of discretized boundary elements is 856, and the number of internal
points for interpolation is 715, as shown in Fig. 5. Young’s modulus
E=70.0 GPa, Poisson’s ratio v=0.2 and yield stress ¢, =243 MPa are assumed.
The spread of plastic zones at different load levels presented in Fig.6 exhibits
good agreement with the conventional boundary element solution for the same
problem.
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(b)

Figure 2: Boundary elements and internal points in quarter-region (Number
of boundary elements: 680). (a) Boundary elements, (b) internal
points.
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Figure 3: Stress  distribution in  Figure4:  Notched tensile

hollow cylinder with specimen.

internal pressure.

(a) (b)
Figure 5  Notched tensile specimen. (a) Boundary elements, (b) internal
points.
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20,/ 0,
Figure 6: Plastic zone obtained for various values of 2c,/c,.
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Figure 7: Perforated tension strip.

The elastoplastic problem of a plate with a circle hole, as shown in Fig. 7, is
solved by using Mises yield criterion. Uniform traction is ¢,, and the thickness
of the plate is Imm. The number of discretized boundary elements is 856, and
the number of internal points for interpolation is 660 as shown in Fig.8. Young's
modulus £=70 GPa, Poisson's ratio v=0.2 and the yield stress 6,=243 MPa are
assumed. Fig.9 shows the plastic zone obtained by this method for various values
20,/0y in a quarter region. This result is in good agreement with the FEM
analysis.
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Figure 8: Boundary element in quarter region. (a) Boundary elements,

(b) internal points.
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4

20,/ 0g

Figure 9: Plastic zone obtained for various values of 20,/6,.

Conclusion

It was shown that three-dimensional elastoplastic analysis can be carried out,
without the use of internal cells, using the triple-reciprocity boundary element
method and initial stress method. The fundamental solutions for initial stress
method were shown. In this method, the strong singularity that appears in the
calculation of internal stress by the conventional boundary element method
becomes weak. Using numerical examples, the effectiveness and accuracy of this
method were demonstrated. In this method, the merit of BEM, which is ease of
data preparation, is not lost because internal cells are not necessary.
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