
Initial stress formulation for three-dimensional 
elastoplastic analysis by the triple-reciprocity 
boundary element method 

Y. Ochiai 
Department of Mechanical Engineering, Kinki University, Japan 

Abstract 

In general, internal cells are required to solve elastoplastic problems using a 
conventional boundary element method (BEM). However, in this case, the merit 
of BEM, which is ease of data preparation, is lost. Triple-reciprocity BEM can 
be used to solve two-dimensional elastoplasticity problems with a small plastic 
deformation. It has been shown that three-dimensional elastoplastic problems 
can be solved, without the use of internal cells, by the triple-reciprocity BEM 
and initial strain method. In this study, an initial stress formulation is adopted 
and the initial stress distribution is interpolated using boundary integral 
equations. A new computer program was developed and applied to solving 
several problems. 
Keywords:  elastoplastic problem, initial stress method, BEM. 

1 Introduction 

Elastoplastic problems can be solved by a conventional boundary element 
method (BEM) using internal cells for domain integrals [1, 2]. In this case, 
however, the merit of BEM, which is ease of data preparation, is lost. On the 
other hand, several countermeasures have been considered. Ochiai and 
Kobayashi proposed the triple-reciprocity BEM (improved multiple-reciprocity 
BEM) without the use of internal cells for two-dimensional elastoplastic 
problems using an initial stress and strain formulations [3]. By this method, a 
highly accurate solution can be obtained using only fundamental solutions of a 
low order. It has been shown by Ochiai that three-dimensional elastoplastic 
problems can be solved, without the use of internal cells, by the triple-reciprocity 
BEM and initial strain method.  
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     In this study, the initial stress formulation and triple-reciprocity BEM are 
adapted to three-dimensional elastoplastic problems, and new fundamental 
solutions for this method are shown. In this method, only boundary elements and 
internal points are used. The arbitrary distributions of the initial stress for 
elastoplastic analysis are interpolated using boundary integral equations and 
internal points. In this method, strong singularities in the calculation of stresses 
at internal points become weak. A new computer program was developed and 
applied to several elastoplastic problems to clearly understand the theory. 

2 Theory 

2.1 Initial stress formulation 

To analyze the elastoplastic problems using the initial strain formulation, the 
following boundary integral equation must be solved [1, 2]. 
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Here, ]1[

jkIσ  is the initial stress rate and cij is the free coefficient. Moreover, iu  
and ip  are the j-th components of the displacement rate and the surface traction 
rate, respectively. On the other hand, Γ and Ω are the boundary and the domain, 
respectively. As shown in Eq. (1), when there is an arbitrary initial stress rate, a 
domain integral becomes necessary. Denoting the distance between the 
observation point and the loading point by r, Kelvin's solution ]1[

iju  and ijp  are 
given by  
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where ν is Poisson's ratio and G is the shear modulus. The i-th component of a 
unit normal vector is denoted by ni. Moreover, let us set r,i=∂r/∂xi. The function 

]1[
ijkε  in Eq. (1) is given by [1] 
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2.2 Interpolation of initial stress    

Interpolation using boundary integrals is introduced to avoid the domain integral 
in Eq. (1). The distribution of the initial stress ]1[

jkIσ  in the case of a three-
dimensional problem is interpolated using the integral equation to transform the 
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domain integral into a boundary integral. The following equations are used for 
interpolation [5-8]:  
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where 2222222 /// zyx ∂∂+∂∂+∂∂=∇ . From Eqs. (6) and (7), we obtain  
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where the function PA
jkI

]3[σ  expresses a state of a uniformly distributed 
polyharmonic function in a spherical region with radius A. We must emphasize 
that Eqs. (6) and (7) can be used for interpolating the complicated distribution of 
the initial stress ]1[

jkIσ . These equations are the same as those used to generate a 
free-form surface using an integral equation [6]. In this method, each component 
of initial stress ]1[

jkIσ  (j, k=1,2,3) is interpolated.  

2.3 Representation of initial stress by integral equation 

The distribution of the initial stress is represented by an integral equation. The 
polyharmonic function T

[f]
 and its normal derivatives are given by 
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Figure 1 shows the shape of polyharmonic functions; the biharmonic function 
]2[T  is not smooth at r=0. In the three-dimensional case, a smooth interpolation 

cannot be obtained using solely the biharmonic function ]2[T . In order to obtain 
a smooth interpolation, the polyharmonic function with volume distribution 

AT ]2[  is introduced. A polyharmonic function with volume distribution AfT ][ , as 
shown in Fig.1, is defined as [5] 
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The function AfT ][  can be easily obtained using the relationships 
θcos2222 aRaRr −+=  and θθdaRdr sin= , as shown in Fig.1. This function is 

written using r instead of R, similarly to Eqs. (8) and (9), though the function in 
Eq. (10) is a function of R. The newly defined function AfT ][  can be explicitly 
shown as 
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Figure 1: Notations for polyharmonic function with volume distribution. 
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Denoting the number of points P
jkI

]3[σ  as M, the curvature of the initial stress rate 
S

jkI
]2[σ  is given by Green's second identity and Eq. (6) as [4–6] 
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The initial stress rate ]1[

jkIσ  is given by Green's theorem and Eqs. (5) and (6) as 
[4–6] 
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where c=0.5 on the smooth boundary and c=1 in the domain. It is assumed that 
S

jkI
]2[σ (Q) is zero. For internal points, the next equation is obtained similarly to 

Eq. (14). 
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If the boundary is divided into N0 constant elements, and N1 internal points are 
used, the simultaneous linear algebraic equations with (2N0+N1) as unknowns 
must be solved.  
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2.4 Triple-reciprocity boundary element method for the representation of 
initial stress 

The function ][ f
jkiε  is defined as  
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Using eqs (5), (6) and (16) and Green's second identity, eq (1) becomes  
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][ f
ijkε  for the representation of initial stress is obtained as [4] 
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Moreover, the normal derivative nf
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2.5 Internal stresses  

The internal stress is given by   
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where ][
ijI

1σ  is the initial stress obtained. The functions Skij and ]1[
ijksσ  in Eq. (22) 

are given by 
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The function ][ f
ijklε  is defined as  
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Using Eq. (25) and Green's theory, Eq. (22) becomes  
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Using Eq. (22) and the relationship between displacement and strain, ][ f
ijklε  is 

obtained as  
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Similarly, nf
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3 Numerical examples 

In order to ensure the accuracy of the present method, the stress in a thick 
cylinder, which is made of an elastoplastic material, subjected to internal 
pressure is obtained. It is assumed that the inner and outer radii are 10 and 
30 mm. The von Mises yield criterion is used, and the cylinder is free in the 
z direction. Young’s modulus E =210 GPa and Poisson’s ratio =ν 0.30 are 
assumed. Internal pressure pO = 1.2 GPa, yield stress =Yσ  1.2 GPa and strain 
hardening H=0.1E are assumed. The numbers of discretized boundary elements 
and internal points are 680 and 315, as shown in Fig. 2. Internal points are used 
to interpolate the distribution of initial stress. Figure 3 shows the circumferential 
and radial stress distributions. Boundary element results are shown with FEM 
solutions in Fig. 2. The stress distributions agree well with the FEM solutions.  
     Next elastoplastic problem is a notched tensile specimen which is shown in 
Fig.4. This example is one of the very early plasticity problems solved using 
the finite-element technique, and boundary element solutions were presented by 
Telles [1]. Von Mises yield criterion and no-strain hardening is assumed. The 
number of discretized boundary elements is 856, and the number of internal 
points for interpolation is 715, as shown in Fig. 5. Young’s modulus 
E=70.0 GPa, Poisson’s ratio ν=0.2 and yield stress σo =243 MPa are assumed. 
The spread of plastic zones at different load levels presented in Fig.6 exhibits 
good agreement with the conventional boundary element solution for the same 
problem.  
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(a)                                                  (b) 

Figure 2: Boundary elements and internal points in quarter-region (Number 
of boundary elements: 680). (a) Boundary elements, (b) internal 
points. 

  

Figure 3: Stress distribution in 
hollow cylinder with 
internal pressure. 

 

Figure 4: Notched tensile 
specimen. 

 

  
                                     (a)                                                   (b)      
Figure 5: Notched tensile specimen. (a) Boundary elements, (b) internal 

points. 
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Figure 6: Plastic zone obtained for various values of 2σa/σo. 

 

Figure 7: Perforated tension strip. 

     The elastoplastic problem of a plate with a circle hole, as shown in Fig. 7, is 
solved by using Mises yield criterion. Uniform traction is σａ, and the thickness 
of the plate is 1mm. The number of discretized boundary elements is 856, and 
the number of internal points for interpolation is 660 as shown in Fig.8. Young's 
modulus E=70 GPa, Poisson's ratio ν=0.2 and the yield stress σＹ=243 MPa are 
assumed. Fig.9 shows the plastic zone obtained by this method for various values 
2σａ/σＹ in a quarter region. This result is in good agreement with the FEM 
analysis. 

     
(a)                                                      (b) 

Figure 8: Boundary element in quarter region. (a) Boundary elements, 
(b) internal points. 
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Figure 9: Plastic zone obtained for various values of 2σa/σo. 

4 Conclusion  

It was shown that three-dimensional elastoplastic analysis can be carried out, 
without the use of internal cells, using the triple-reciprocity boundary element 
method and initial stress method. The fundamental solutions for initial stress 
method were shown. In this method, the strong singularity that appears in the 
calculation of internal stress by the conventional boundary element method 
becomes weak. Using numerical examples, the effectiveness and accuracy of this 
method were demonstrated. In this method, the merit of BEM, which is ease of 
data preparation, is not lost because internal cells are not necessary.  
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