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Abstract 

In the particular case of solving large-scale boundary value problems, the 
computational cost derived as a result of the application of any numerical scheme 
represents a determinant factor in the determination of its computational 
efficiency. The present work studies the influence of the non-overlapping 
domain decomposition on the symmetric radial basis collocation method, as a 
way to improve its efficiency under high demanding numerical conditions. Due 
to the Hermitian character of the symmetric scheme at each of the collocations 
points of the sub-domain interfaces it is possible to impose simultaneously all the 
corresponding matching conditions. A multi-zone problem is considered as a test 
example, comparison between the numerical result and the analytical solution for 
two set of different physical parameters are presented.  
Keywords: symmetric RBF meshless approach, domain decomposition and 
double collocation.  

1 Introduction 

The use of a mesh is a basic characteristic of traditional numerical approaches 
for the solution of partial differential equations, as is the case of the finite 
difference, element, volume and the boundary element methods. In the first 
cases, assumptions are made for the local approximation, which require internal 
mesh to support them. On the other hand, in the case on boundary methods, a 
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boundary mesh is required to obtain a numerical approximation of the resulting 
boundary integrals. 
     During recent years, considerable effort has been given to the development of 
the so-called free-mesh methods (meshless approach). The aim of this type of 
approach is to eliminate at least the structure of the mesh and approximate the 
solution entirely using nodes values inside and/or in the boundary quasi random 
distributed in the domain. 
     Recently, some significant developments in meshless methods for solving 
boundary value problems of partial differential equations have been reported in 
the literature. Kansa [1, 2] introduced the concept of solving PDEs using radial 
basis functions (RBFs) (Unsymmetric scheme). This type of approach, which 
approximates the whole solution of the PDE directly using RBFs, is very 
attractive due to the fact that this is truly a mesh free technique. 
     The Kansa’s method has been applied successfully in several cases (see for 
example [3–5]). However, no existence of solution and convergence analysis is 
available in the literature and for some cases, it has been reported that the 
resulting matrix was extremely ill-conditioned and even singular for some 
distribution of the nodal points (see [6]).  
     Several techniques have been proposed to improve the conditioning of the 
coefficient matrix and the solution accuracy, as are: the use of high order 
interpolation functions, replacement of global solvers by block partitioning, LU 
decomposition schemes, matrix preconditioners, overlapping and non-
overlapping domain decomposition etc (see [7]). Fedoseyev et al. [8] proposed 
the use of a set of additional nodes at the boundary and beyond the boundary (at 
the exterior) where the governing equation is required to be satisfied. It was 
found that the suggested approach yields to more accurate results than only 
imposing the governing equation at internal nodes.  
     Fasshauer [9] suggested an alternative approach to the Unsymmetric scheme 
based on the Hermite interpolation property of the radial basis functions, which 
states that the RBFs not only are able to interpolate a given function but also its 
derivatives. The convergence proof for RBF Hermite-Brikhoff interpolation was 
given by Wu [10] who also proved the convergence of this approach when 
solving PDEs (see Wu [11] and Schaback and Franke [12]). Another advantage 
of the Hermite based approach is that the matrix resulting from the scheme is 
symmetric, as opposed to the completely unstructured matrix of the same size 
resulting from Unsymmetric schemes. 
     The main objective of this work is to study and test some of the above 
mentioned techniques previously used to improve the efficiency of the 
Unsymmetric approach in order to increase the computational efficiency of the 
radial basis function symmetric approach. In particular, we will study the non-
overlapping domain decomposition with a double collocation at the sub-domain 
interfaces. The domain decomposition approach is itself a very powerful and 
popular scheme in numerical analysis, which have recently increased its 
popularity due to its use in parallel computing algorithms.  
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2 Symmetric radial basis function meshless approach  

Let us consider a boundary value problem defined by:  
 

[ ]( ) ( )xfxCL =                                                         (1-a) 

[ ]( ) ( )xgxCB =                                               .         (1-b) 
where the operators L and B are linear partial differential operators on the 
domain Ω and at the contour Γ respectively.  
      A symmetric RBF collocation method (Fasshauer [9]), represents the 
solution of the above boundary value problem by the interpolation function: 
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with n  as the number of nodes on the boundary of Ω and nN −  the number of 
internal nodes. Here, ( )jxx −Ψ  is a conditionally positive definite RBF of 

order m and P a polynomial term of order 1−m . 
     In the above expression ξL  and ξB  are the differential operators used in 
(1-a,b), but acting on Ψ viewed as a function of the second argument ξ 
(see Fasshauer [9]). This expansion for C  leads to a collocation matrix A, which 
is of the form 
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where the following ortogonality conditions is required to complete the system: 
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The matrix (3) is of the same type as the scattered Hermite interpolation matrices 
and thus non-singular as long as Ψ is chosen appropriately (see Wu [6]). A major 
point in favour of the Hermite based approach is that the matrix resulting from 
the scheme is symmetric, as opposed to the completely unstructured matrix of 
the same size resulting from Unsymmetric schemes. 

3 Convection-diffusion problem 

The steady state differential equation considered in this work is of the form: 
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The partial differential operators on the matrix representation (3) of the 
symmetric collocation numerical solution of equation (5), when satisfying 
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boundary conditions of the first and second kind (Dirichlet and Neumann), are 
defined by the following expressions:  
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In the above relations the super index D and N in the operator B represent the 
type of boundary conditions implemented, i.e. Dirichlet and Neumann.  
     In this work we will use the generalized TPS. Furthermore to avoid 
singularity at 0=r  on the resulting differential operators of the matrix A, we 
use in the representation formula (2) the generalized TPS  
 

rr log6=ψ                                                (7) 
together with the corresponding cubic polynomial. 
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4 Domain decomposition approach  

Domain decomposition methods are frequently used in two contexts. First: the 
division of problems into smaller problems usually through artificial 
subdivisions of the domain, as a way to improve the performance of a numerical 
technique. Second, many problems involve more than one mathematical model 
each posed on a different domain, so that domain decomposition occurs 
naturally. 
     When dealing with the numerical simulation of large problems, it is usual to 
use the method of domain decomposition, in which the original domain is 
divided into sub-regions, and on each of them the original governing equations 
are imposed.  
     The main objective of the domain decomposition method is to decompose one 
large global problem into smaller sub-domain problems. In the implementation 
of the domain decomposition approach, two different alternatives are possible to 
use: overlapping and non-overlapping schemes. 
     In the non-overlapping technique, the domain is divided into non-overlapping 
sub-domains having common interface surfaces. In each sub-domain the original 
numerical scheme is implemented. Owing to the lack of the boundary condition 
on the interface between sub-domains, additional surface unknowns need to be 
determined, i.e. in the present case the value of the concentration and the surface 
flux. For each interface boundary point, the number of unknowns is more than 
the number of the equations and therefore the resulting system is 
underdetermined. However, once the matching conditions are imposed and the 
sub-domain assembled, then is possible to obtain a close system.  
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     In the overlapping approach, the problem can be solved by an iterative 
scheme in terms of one of the Schwarz methods, i.e. by solving recursively each 
of the sub-domains, or instead the complete close system can be solved directly, 
after imposing the interface matching conditions between subdomains, without 
the used of an iterative scheme.  
     It is important to observe that the non-overlapping domain decomposition 
approach is naturally suited for the numerical solution of multi-zone problems, 
where the governing equations have different values of the problem parameters 
at different regions of the problem domain.  
     Several application of the domain decomposition approach has been reported 
in the literature when solving partial differential equations with the use of the 
Unsymmetric radial basis function collocation approach. In the work by Kansa 
and Carlson [13] they conclude that one of the most efficient technique when 
solving dense system of linear equation is to use preconditioning and to make 
use of domain decomposition techniques.  
     In this work will be implement the non-overlapping non-iterative domain 
decomposition approach for the numerical solution of boundary values problems 
based on the symmetric radial basis function collocation approach, with 
application to multi-zone problems. 

5 Multi-zone problems 

Considering a problem that contains different regions, in which the coefficients 
of the governing equation are constant but different in each of them. In the 
implementation of the non-overlapping domain decomposition approach for the 
solution of multi-zone problems, the problem’s domain is divided into a finite 
number of non-overlapping zones according with the behaviour of the governing 
equation.  
     In order to implement the symmetric approach to solve this type of multi-zone 
domain problem, the solution at each zone is represented by its corresponding 
symmetric interpolation using a set of collocation points within each of the zones 
and the points at the interface between them. At the interfaces points that 
coincide with the physical boundary of the problem, the corresponding boundary 
conditions are imposed, while at the internal points, it is required that the 
governing equation, with corresponding value of the parameters at each zone, 
should be satisfy.   
     To solve this type of problem it is necessary to impose the continuity of flux 
at the interfaces between the zones, i.e. the flux leaving one sub-zone has to be 
equal to the flux entering the other. Therefore, it is necessary that the following 
flux matching conditions hold at the mth interface of the sub-zones i and i+1: 
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Besides the above conditions, the concentration at each interface needs to be 
continuous, i.e.: 
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The Hermitian interpolation property of the symmetric approach (which takes 
into account the function and it’s derivate) makes this method a natural 
technique to deal with the above matching conditions. There are two different 
alternatives to impose the interface matching conditions. First two different set 
of points at each sub-domains interface are defined. In each set of points a 
different matching condition is imposed, i.e. of the 1 2i i in n n= +  interface points 

1in  are required to satisfy the continuity of the concentration and on the 
remaining 2in  points the flux matching condition is satisfied. On the other hand, 
due to the dependence of the Hermite interpolation on the partial differential 
operators, it is possible to impose simultaneously both conditions at each 
interface point. In this last case, as we are using a Hermite interpolation scheme, 
the resulting matrix system is non-singular as long as the partial differential 
operators applied to each point are linearly independent, even if in a single node 
we impose two different differential conditions (see Wu [11]). In this case, at 
each interface point both matching conditions, i.e. concentration and flux, are 
required to be satisfied. Therefore, the Hermite interpolation function is 
represented by:  

( ) ( ) ( )

( ) ( ) ( )xPxLx
n

D

xxBxC

m

N

nnk
k

i
kk

i

nn

nnk
k

n

nk
kk

n

k
kk

ib

ib

ib

i

b

b

1
2

2

111

−
+=

+

++=+==

+−Ψ+









−Ψ

∂
∂

+−Ψ+−Ψ=

∑

∑∑∑

ξλξ

λξλξλ

ξ
ξ

ξ

    (11) 

with bn  as the number of nodes on the boundary of a subdomain that coincide 
with the physical boundary, i.e. at an internal subdomain 0bn ≡ , in  the number 
of nodes on the interfaces common with other subdomains and ( )b iN n n− +   
the number of internal nodes at the subdomain. As before, in the above 
expression iLξ  and Bξ  are the differential operators corresponding to the partial 

differential equation at the subdomain and the boundary differential operator.  
     In the above interpolation function, the flux matching condition (9) at the 
interface m is reduced to  
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since we are imposing simultaneously at each interface point the continuity of 
concentration and flux, besides the convective velocity field needs to be 
continuous across the sub-domains.  
     It is important to point out that the above double collocation strategy at the 
interface points can also be used in the standard Unsymmetric approach (Kansa 
method). However due to lack of dependence on the differential operators of the 
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corresponding interpolation function, this alternative will results in an over-
determined system of algebraic equations. 

5.1 Numerical examples 

Let us consider the steady state heat transfer problem in a circular cylinder with a 
circular hollow. At the origin a constant value of temperature is given as well as 
at the exterior wall. The cylinder consists of three rings of constant but different 
parameters (see figure 1), under these conditions, in cylindrical co-ordinates, the 
problem is described by the following equation: 
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where iK and iα  are the thermal conductivity and heat generation rate at the 
zone (ring) i, respectively, and r is the radial distance. The matching conditions 
at the contact region between rings, i.e. continuity of temperature and flux are 
given by: 
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The analytical solution of the problem is given by Carslaw and Jaeger [13]. 
By expanding the cylindrical Laplacian operator in equation (21), we obtain the 
following expression:  
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which can be interpreted as a one-dimensional convection diffusion equation 
with variable negative convective velocity field, rKu ii

r /−= . 
 

r1

r2

r3

 
 

Figure 1: Cylindrical domain consisting of three rings with different constant 
coefficients at each ring. 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  19



     The one-dimensional problem defined by equation (15), the matching 
conditions given by equation (14) and the corresponding boundary conditions at 

0r r=  and  3r r= , will be solve here as two dimensional convection diffusion 
problem in the  rectangular domain 31 7x r dm≤ ≤ =  and 0 2y dm≤ ≤  with 
zero lateral flux, were at each zone (ring) the following governing equation is 
satisfied: 
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Two cases are considered, with different parameters in each zone and the same 
boundary conditions; (0, ) 1T y = , (7, ) 2T y =  and / 0T n∂ ∂ =  at 0y =  and 

2y = .  
     In figures 2 and 3, it is possible to appreciate the excellent agreement found 
between the numerical results using the above symmetric meshless collocation 
method and the analytical solution. In the first example (figure 2), a total of 841 
collocation points uniformly distributed were used in order to achieve the 
obtained accuracy. The second case is more computational demanding due to the 
drastic changes in the heat production term, ( 1, 2,3)i iα = , between the different 

zones, given by 1 2 35, 3, 10α α α= = − =  (temperature/sec). In this case, we 
compare how the numerical result is affect by increasing the total number of 
collocation points. In figure 3, the results for two different set of uniform 
distribution of collocation points (841 and 2987) are presented, showing the 
convergence of the numerical scheme.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Comparison between the analytical solution ─ and the numerical 
results  for the following parameter: 1 2 32, 0, 4α α α= = =  

(temperature/sec) and 1 2 3 1K K K= = =  ( 2 / secdm ). 
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Figure 3: Comparison between the analytical solution ─ and the numerical 
results obtained with a total of 841, ( ), and 2987, )(∆ , 
collocation points, for the following parameters: 

1 2 35, 3, 10α α α= = − =  (temperature/sec) and 
1 2 3 1K K K= = =  ( 2 / secdm ). 

6 Conclusions 

The use of symmetric radial basis function collocation method to solve partial 
differential equations provides a simply accurate and truly meshes free 
technique. It is important to point out that in the case when this scheme is 
applied to solve large scale problems with a large number of data points, the 
conditional number of the resulting collocation matrix could be very large and 
the computational performance poor. As a way to overcome these problems, a 
domain decomposition scheme with double collocation at the interfaces joining 
neighbouring sub-domains is proposed. The proposed domain decomposition 
technique makes possible to improve the ill-conditioning problem through the 
reduction of the size of the full coefficient matrix to be solved in a global 
manner.  

Acknowledgements 

This research was been partially sponsored by the GABARDINE project 
(Contract number 518118) – part of the FP6-2006-TTC-TU European 
Commission Programme. 

References 

[1] E.J.Kansa, Multiquadrics- A scattered data approximation scheme with 
applications to computation fluid-dynamics-I: Surface approximations and 
partial derivatives estimates; Computers Math. Applic. 19, pp 127-145, 
(1990) 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7

x (mm)

C
 (m

ol
/l)

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  21



[2] E.J.Kansa, Multiquadrics- A scattered data approximation scheme with 
applications to computation fluid-dynamics-II: Solution to parabolic, 
hyperbolic and elliptic partial differential equations; Computers Math. 
Applic. 19, pp 147-161, (1990) 

[3] Dubal M.R. Domain decomposition and local refinement for multiquadric 
approximations. I: second-order equations in one-dimension, Journal of 
Applied Science, 1, No.1, 146-171 (1994). 

[4] Y. C. Hon and X. Z. Mao An efficient numerical scheme for Burgers' 
equations, Appl. Math. and Comp. 95, 37-50 (1998). 

[5] Z Zerroukat M., Power H. and Chen C.S., A numerical method for heat 
transfer problems using collocation and radial basis functions, Int. J. 
Numer. Meth. Engng, 42, 1263-1279, (1998). 

[6] Dubal M.R., Olivera S.R. and Matzner R.A. In Approaches to Numerical 
Relativity, Editors: R.d Inverno, Cambridge University Press, Cambridge 
UK, (1993). 

[7] Kansa E.J. and Hon Y.C., Circumventing the ill conditioning problem 
with multiquadric radial basis functions: applications to elliptic partial 
differential equations, 39, 123-137, (2000). 

[8] Fedoseyev AI, Friedmann MJ, Kansa EJ. Improved multiquadratic 
method for elliptic partial differential equation via PDE collocation on the 
boundary. Comput. Math. Appl. 2002, 43, 439-455 

[9] Fasshauer G.E. Solving Partial Differential Equations by Collocation with 
Radial Basis functions, Proceedings of Chamonix, Editors: A. Le 
Méchauté, C. Rabut and L.L. Schumaker, 1-8, Vanderbilt University 
Press, Nashville, TN (1996). 

[10] Wu Z., Hermite-Birkhoff interpolation of scattered data by radial basis 
functions; Approx. Theory, 8:2, 1-11 (1992). 

[11] Wu Z., Solving PDE with radial basis function and the error estimation; 
Advances in Computational Mathematics, Lecture Notes on Pure and 
Applied Mathematics, 202, Editors: Z. Chen, Y. Li, C.A. Micchelli, Y. Xu 
and M. Dekker, GuangZhou (1998). 

[12] Schaback R and Franke C., `Covergence order estimates of meshless 
collocation methods using radial basis functions', Advances 
Computational Mathematics, 8, Issue 4, 381-399, (1998). 

[13] Kansa E.J. & Carlson 1992, ‘Improved accuracy of multiquadric 
interpolation using variable shape parameters’, Computers & Mathematic 
with Application, vol. 24, 99-120. 

[14] Carslaw H.S. and Jaeger J.C., Conduction of heat in solids, Oxford at the 
Clarendon press, Oxford, (1959). 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

22  Boundary Elements and Other Mesh Reduction Methods XXIX


