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ABSTRACT 
The objective of this work is to verify the viability of using recurrent and convolutional neural networks 
models in the task of predicting ozone levels in the troposphere every hour for the next 24 hours. For 
this, the recurrent neural networks long short-term memory (LSTM), gated recurrent unit (GRU), and 
convolutional neural networks (CNN) models were trained using data from an air quality monitoring 
system collected in the metropolitan region of Vitória, Espírito Santo, Brazil, which contains several 
meteorological and air quality parameters. For validation, we applied the models over unseen data and 
compared different neural networks architectures using results obtained according to variations in 
hyperparameters such as the lookback and the number of layers, in addition to comparing the results 
obtained from the neural networks models applied with those obtained by a deep multi-layer perceptron, 
available in the literature. We show that the use of recurrent neural networks is a viable alternative for 
the task of predicting ozone levels and the LSTM model had the best results amongst the applied 
models. 
Keywords:  ozone forecasting, air quality, neural networks, deep learning, recurrent neural networks, 
convolutional neural network. 

1  INTRODUCTION 
Ozone (O3), formed from photochemical reactions together with other pollutants such as 
nitrogen oxides (NOx) and volatile organic compounds (VOC), is the most important 
photochemical oxidant in the troposphere and, according to reports based on studies and 
released by the World Health Organization (WHO), tropospheric ozone is recognized as a 
threat to human health [1]. 
     This is an oxidizer that can make intercontinental trips, as it is a pollutant that can remain 
in the free troposphere for weeks, but when in urban regions can rapidly be consumed or 
formed, having a short lifetime due to its precursors that are emitted by the large number of 
vehicles and industries. It is also related to respiratory problems: it is estimated that around 
5–10% of all deaths related to air pollution come from exposure to ozone [2]. In addition to 
the human threat, it is possible to observe environmental impacts in the loss of biomass in 
forests that is caused by the negative influence that ozone can cause on them [3]. 
     Forecasting ozone levels in the troposphere for a specified number of hours ahead can be 
very helpful in assisting research and precautionary measures involving air quality and 
human health, in operational forecasting systems. The 2005 WHO air quality guidelines sets 
the recommended value for ozone concentration for a daily maximum 8-hour average [4]. It 
is important to develop a predictive model that exceeds this limit to allow immediate 
preventive responses to health threats. Thus, the objective of the present work is to study and 
develop different types of deep neural networks aiming to build a model capable of predicting 
the levels of tropospheric ozone hourly up to the next 24 hours, with good performance. For 
this, the recurrent neural networks long short-term memory (LSTM), gated recurrent unit 
(GRU) models, and the convolutional neural network (CNN) model were studied and 
developed for the task of prediction. A dataset, which contains various meteorological and 
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air quality data of the region of Vitória, state of Espírito Santo, Brazil, was used for training 
and validating the aforementioned models. The metrics mean squared error (MSE), mean 
absolute error (MAE), Pearson r and R² were used to evaluate the results of the models. The 
results obtained by the models were then compared with a multi-layer perceptron model 
presented in the literature. 
     This present work is divided into five main sections. Section 2 addresses related works 
and explores a variety of works whose context is within the use of techniques for predicting 
ozone levels. Section 3 contains basic concepts of how the LSTM, GRU and CNN neural 
network models are implemented in general. Section 4 shows details of the structure of the 
data used in the region of study and the topologies of the developed neural network models. 
Section 5 presents the results obtained from the metrics of the trained models and contains 
the analysis of these results together with their comparison with the results of an MLP model 
found in the literature. Finally, Section 6 contains final considerations and discussions related 
to future work. 

2  RELATED WORKS 
A variety of techniques for studying ozone levels are widely disseminated and can be found 
in several works in the literature [5]–[10]. 
     Within the field of artificial neural networks, it is important to mention the work of Sousa 
et al. [5], in which the authors used a supervised learning approach to train models of multiple 
linear regressions and multi-layer perceptron (MLP) for this task of forecasting ozone levels 
in the troposphere every hour for the next 24 hours. The models were trained using principal 
components as input, and used a dataset with data collected from an urban site located in 
Porto, Portugal. As a result, the authors showed that the artificial neural network model 
presented better accuracy for the prediction of ozone levels compared to linear models 
because of the non-linearity of the addressed problem. In addition, the authors showed that 
the use of principal components as input of the neural network generated better results than 
the use of the original data only, as it reduced the complexity of the model. 
     The work of Gomez-Sanchis et al. [6] addresses the use of artificial neural networks, using 
MLP specifically, for the estimation of ozone levels in the troposphere from input data related 
to meteorological variables and vehicle emissions obtained from the south of the city of 
Valencia, Spain. The authors’ study focuses on finding the relevance among climatological 
variables and atmospheric contaminants for the prediction of ozone levels. The authors 
showed the high complexity of the variables that determine ozone levels in the troposphere, 
stating that they are non-linear and time-dependent, but emphasize that few variables were 
used.  
     The use of an MLP model to predict ozone levels in the troposphere is also found in the 
work of Alves et al. [7], where the authors developed, trained and validated a predictive 
model using data from an Air Monitoring System located in the city of Vitória, Brazil. The 
authors used several meteorological and air pollution variables during the development of 
the work, aiming to forecast the average tropospheric ozone levels for each hour, up to  
24 hours. 
     There are also works that use recurrent neural networks for the forecasting of ozone levels, 
such as the work of Biancofiore et al. [8], in which the authors used a recurrent three-layer 
architecture of an Elman artificial neural network to predict ozone levels every hour for the 
next 48 hours. This architecture presented by the authors can be summarized as a recurrent 
multi-layer perceptron, which is an extension of a feedforward MLP [9]. The authors used a 
dataset from the city of Pescara, Italy, containing several variables, some of which are: O3, 
NO2, NO, NOx levels, relative humidity and wind speed and direction. As a result, the authors 
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showed that the recurrent neural network had better results compared to feed-forward neural 
networks.  
     Within the context of recurrent neural networks, the work of Pak et al. [10] addresses the 
use of a hybrid model of long short-term memory and convolutional neural network for the 
task of ozone levels forecasting in the city of Beijing, China. According to the authors, the 
CNN model is able to extract efficiently the characteristics of large amount of data related to 
air quality and weather, while the LSTM is able to reflect the long-term historical process 
contained in the data. 

3  RECURRENT AND CONVOLUTIONAL NEURAL NETWORKS 
The artificial neural networks used in this work were the CNN, and the recurrent networks 
called GRU and LSTM. An overview of these types of neural networks will be shown in this 
section. 

3.1  Long short-term memory (LSTM) 

Fig. 1 shows the structure of an LSTM cell. All lines carry data that can go through pointwise 
operations, neural network layers, concatenations and replications.  
 

 

Figure 1:    Structure of an LSTM cell. Arrows represent data flow, squares represent 
pointwise operations, and circles correspond to the activation functions. 

     LSTM is a special type of recurrent neural network that was created as an approach to the 
problem of forgetting long-term dependencies common in recurrent neural networks. LSTM 
was first introduced by Hochreiter and Schmidhuber [11] and, since then, many variants of 
this neural network have been created. 
     The most important part of an LSTM is the cell state, which is an internal selective 
memory of the past, represented by the horizontal line that starts at ct–1 and ends at ct. The 
hidden state, represented by h, is the output of the LSTM cell. Eqns (1)–(6) represent the 
functions seen in Fig. 1, given by 

 𝑓௧ ൌ 𝜎൫𝑊௙ ⋅ ൣℎሺ௧ିଵሻ, 𝑥௧൧ ൅ 𝑏௙൯, (1) 

 𝑖௧ ൌ 𝜎൫𝑊௜ ⋅ ൣℎሺ௧ିଵሻ, 𝑥௧൧ ൅ 𝑏௜൯, (2) 

 𝐶𝑠௧ ൌ 𝑆൫𝑊஼ ⋅ ൣℎሺ௧ିଵሻ, 𝑥௧൧ ൅ 𝑏஼൯, (3) 

 𝐶௧ ൌ 𝑓௧ ∗ 𝐶ሺ௧ିଵሻ ൅ 𝑖௧ ∗ 𝐶𝑠, (4) 
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 𝑜௧ ൌ 𝜎൫𝑊௢ ⋅ ൣℎሺ௧ିଵሻ, 𝑥௧൧ ൅ 𝑏௢൯, (5) 

 ℎ௧ ൌ 𝑜௧ ∗ 𝑆ሺ𝐶௧ሻ, (6) 

where 𝑓௧ represents the forget gate, 𝑖௧ represents the input gate, 𝐶𝑠௧ represents the candidate 
for the cell state at a given timestep t, 𝐶௧ represents the cell state at a given timestep t, 𝑜௧ 
represents the output gate at a given timestep t, σ represents the sigmoid operation, S 
represents a hyperbolic tangent operation, 𝑊௫ represents the weight for the respective gate x 
neurons, ℎ௧ represents the output of the LSTM block at a given timestep t. 𝑥௧ represents the 
input at the current timestep and 𝑏௫ represents the biases for the respective gates x. 

3.2  Gated recurrent unit (GRU) 

The GRU, as seen in Fig. 2, is a variation of the LSTM that was introduced by Cho et al. 
[12]. 
 

 

Figure 2:    Structure of a GRU cell. Arrows represent data flow, squares represent pointwise 
operations, and circles represent activation functions. 

     GRU merges the input and forget gates, in addition to also merging the cell and the hidden 
states, which generates a simpler model than the LSTM. GRU is able to perform as well as 
LSTM in certain tasks, especially in small datasets, but LSTM is still more powerful in 
overall [13]. The GRU’s functions are described in eqns (7)–(10), as follows 

 𝑧௧ ൌ 𝜎൫𝑊௭ ⋅ ൣℎሺ௧ିଵሻ, 𝑥௧൧൯,  (7) 

 𝑟௧ ൌ 𝜎൫𝑊௥ ⋅ ൣℎሺ௧ିଵሻ, 𝑥௧൧൯,  (8) 

 ℎ𝑠௧ ൌ 𝑆൫𝑊 ⋅ ൣ𝑟௧ ∗ ℎሺ௧ିଵሻ, 𝑥௧൧൯,  (9) 

 ℎ௧ ൌ ሺ1 െ 𝑧௧ሻ ∗ ℎሺ௧ିଵሻ ൅ 𝑧௧ ∗ ℎ𝑠௧,  (10) 

 
where 𝑧௧ represents the update gate, 𝑟௧ represents the reset gate, ℎ𝑠௧ represents the current 
memory content and ℎ௧ represents the final memory content. 

3.3  Convolutional neural networks (CNN) 

Fig. 3 shows a graphical representation of a typical CNN architecture. 
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Figure 3:  Typical CNN architecture. 

     A CNN is a type of artificial neural network that applies filters to the input data and has 
great learning power for spatial and even temporal relationships within the input data. CNN 
is able to reduce data size through its convolution operations conducted by the kernel/filter 
in the convolution layer, which extracts high-level features from the data. The kernel 
convolution is a process where the input is transformed based on the values of a filter (eqn 
(11)). Eqns (12) and (13) describe the convolution layer 

 𝐺ሾ𝑚, 𝑛ሿ ൌ ሺ𝑓 ∗ 𝑘ሻሾ𝑚, 𝑛ሿ ൌ  ∑ ∑ 𝑘ሾ𝑗, 𝑖ሿ𝑓ሾ𝑚 െ 𝑗, 𝑛 െ 𝑖ሿ௜௝ , (11) 

 𝑉௟ ൌ  𝐾௟ ∙ 𝐶ሾ௟ିଵሿ ൅ 𝑏௟, (12) 

 𝐶௟ ൌ  𝑎௟ሺ𝑉ሾ௟ሿሻ, (13) 

where 𝐺 represents the feature map, 𝑓 represents the input, 𝑘 represents the kernel, 𝑚 and 𝑛 
represent the rows and columns of the result matrix, j and i represent the elements of the filter 
kernel, l represents the layer position, V represents the intermediate value, K represents the 
tensor that contains filters, C represents the result of the convolution of the input data, b 
represents the bias and a represents the activation function. 
     There is also the pooling layer, which, in order to reduce the necessary processing power 
required for the network training, is responsible for performing a reduction of the spatial size 
of the output of the convolution step. Example of pooling operations are the maximum value 
(MaxPooling) and the average value (AvgPooling) in a certain fixed-size window. Soon after, 
there is a layer responsible for flattening the output so that a regular MLP can use the main 
features extracted from the input by the previous layers to perform the desired task of 
regression or classification. Because of these characteristics, CNNs are widely used in 
computer vision to perform tasks such as, for example, detecting objects in images.  

4  METHODS AND DATA 
The dataset used for training and validating the models developed in this work consists of 
data from an air monitoring system of the State Institute of Environment of Espírito Santo 
(Instituto Estadual de Meio Ambiente e Recursos Hídricos do Espírito Santo – IEMA – ES). 
The data were collected during the period between 2001 and 2015 in the region of Cariacica, 
which is a city in the metropolitan region of Vitória, Espírito Santo, Brazil (Fig. 4). This data 
is available for public use. 
     The dataset consists of hourly averages of air pollutant and meteorological measurements, 
namely: total suspended particulate matter (PM10), sulfur dioxide (SO2), nitrogen monoxide 
(NO), nitrogen dioxide (NO2), NOx, carbon monoxide (CO), O3, air temperature and  
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Figure 4:    Map with locations of air monitoring stations. Numbers represent each station. 
(Source: https://iema.es.gov.br/.) 

 

Figure 5:    Monthly average of tropospheric ozone concentrations in the period between 
2001 and 2005 in the region of Cariacica, Vitória, Brazil. 

humidity, scalar wind direction and wind speed. On average, the ozone concentrations starts 
to increase in June, reaching the highest values in September (Fig. 5). The highest ozone 
concentrations occurred in 2015 with a value of 126 µg/m³. 
     For the purpose of comparing the results, the data used in this work for training, validation 
and testing were the same as the work of Alves et al. [7], in which a data treatment in the 
presented dataset was carried out. The data was scaled to a range between 0 and 1, eliminating 
missing or invalid data, including all data from the years of 2007, 2009, 2010 and 2013, while 
maintaining the consistency of the time series. Therefore, this work used 30,492 samples, 
where 22,987 data points from the years 2001 to 2005 were used for training and validation, 
and 7,505 data points from the years 2006, 2008, 2011, 2012, 2014 and 2015 were used for 
testing the models. The authors split these two batches of data so that they both have samples 
for all periods in different time scales (hours, days, weeks and months). The metrics used for 
the evaluation of the models performance were the mean squared error (MSE), mean absolute 
error (MAE), Pearson r, R² and mean absolute percentage error (MAPE). 
     The topology of the developed LSTM neural network is shown in Table 1. In it, 4 hidden 
LSTM layers were created with 94 neurons in the first layer, 55 neurons in the second layer, 
36 in the third layer and 48 in the fourth layer. The activation function used was the rectified 
linear unit (ReLU) for all layers and the optimization function was Adadelta. The loss 
function used was the MSE. 
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Table 1:  Developed LSTM architecture. 

Layer 
LSTM topology 

Layer type Neurons Activation function 
1st Hidden layer LSTM 94 ReLU
2nd Hidden layer LSTM 55 ReLU
3rd Hidden layer LSTM 36 ReLU
4th Hidden layer LSTM 48 ReLU
Output Dense 24 Linear

 
     The topology of the GRU neural network was similar to LSTM and can be seen in Table 
2. The only difference between the LSTM and GRU models was the use of GRU layers in 
the latter. 

Table 2:  Developed GRU architecture. 

Layer 
GRU topology 

Layer type Neurons Activation function 
1st Hidden layer GRU 94 ReLU
2nd Hidden layer GRU 55 ReLU
3rd Hidden layer GRU 36 ReLU
4th Hidden layer GRU 48 ReLU
Output Dense 24 Linear

 
     The topology of the CNN can be seen in Table 3. For this neural network, a one-
dimensional convolutional layer was created, followed by a MaxPooling and a flatten layer. 
The convolutional layer has 128 filters and its activation function was ReLU. The 
optimization function used in the model was also Adadelta and the loss function used was 
MSE. The output layer of all implemented models has 24 neurons, which represent all  
24 hours of the forecasting, with a linear activation function. Data referring to five timesteps 
were used as input for the task of predicting the 24 future timesteps.  

Table 3:  Developed CNN architecture. 

Layer 
CNN topology 

Layer type Filters/neurons Activation function 
1st Hidden layer 1D convolution 128 ReLU 
2nd Hidden layer 1D MaxPooling N/A N/A 
3rd Hidden layer Flatten N/A N/A 
Output Dense 24 Linear 

5  RESULTS AND DISCUSSION 
As results, Table 4 presents the evaluation of the metrics obtained for all models developed 
in this work and the MLP presented in the work of [7]. These results are related to the 
forecasting of ozone levels every hour for the 24 hours ahead. It is possible to note that the 
models with the best results are the LSTM and the MLP, both being comparable, although 
the LSTM is slightly worse than the MLP when considering all 24 hours ahead. 
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Table 4:  Models metrics results comparison. 

MODEL MSE MAE r R² MAPE 
LSTM 102.3 7.69 0.77 0.59 72.8
GRU 149.7 9.67 0.61 0.38 105.6
CNN 156.1 9.79 0.61 0.38 105.6
MLP 101.8 7.68 0.77 0.59 70.5

 
     However, as we can see in Tables 5 and 6, it is notable that the LSTM presents better 
results of MSE and MAE when it tries to predict more than 9 hours ahead, with the exception 
of the 24th hour, where the MLP presents better results. This shows the potential of LSTM 
to learn long-term dependencies in the forecasts.  

Table 5:  Multilayer perceptron performance metrics. Results taken from [6]. 

Timesteps MSE MAE r R² MAPE 
T + 1 42.90 4.94 0.91 0.83 41.14
T + 2 65.37 5.93 0.86 0.75 51.10
T + 3 77.46 6.61 0.83 0.69 57.65
T + 6 99.42 7.56 0.77 0.60 67.39
T + 9 110.5 8.01 0.75 0.56 72.44

T + 12 114.1 8.19 0.74 0.55 75.13
T + 15 113.5 8.23 0.74 0.55 76.20
T + 18 111.7 8.16 0.74 0.56 75.81
T + 21 106.7 7.97 0.76 0.57 75.84
T + 24 101.5 7.77 0.77 0.59 76.73

Table 6:  Long short-term memory performance metrics.  

Timesteps MSE MAE r R² MAPE 
T + 1 60.58 5.68 0.87 0.75 45.63
T + 2 78.38 6.62 0.82 0.68 58.07
T + 3 87.09 6.99 0.80 0.64 60.12
T + 6 101.8 7.62 0.77 0.59 67.28
T + 9 110.7 8.05 0.74 0.56 75.91

T + 12 112.2 8.09 0.74 0.55 76.67
T + 15 109.1 8.01 0.75 0.56 77.0
T + 18 105.4 7.89 0.75 0.57 79.02
T + 21 103.4 7.78 0.76 0.58 78.18
T + 24 108.1 8.04 0.75 0.56 83.2

 
     The individual results of GRU and CNN are presented in Tables 7 and 8.  
     Fig. 6 shows a graphical comparison of the MSE between the models for each hour 
predicted within the 24-hour period.  
     Fig. 7 represents the same comparison, but considering the R². All metrics presented in 
the tables were calculated according to the original scale of the data. 
     Figs 8 and 9 show comparisons between the values observed and predicted by the LSTM 
for predictions of the next hour and for the same hour on the next day in certain periods.  
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Table 7:  Gated recurrent unit performance metrics. 

Timesteps MSE MAE r R² MAPE 

T + 1 156.9 9.93 0.59 0.35 111.6 

T + 2 150.4 9.65 0.62 0.38 106.4 

T + 3 155.2 9.82 0.59 0.35 103.8 

T + 6 148.7 9.64 0.61 0.38 108.2 

T + 9 152.4 9.73 0.60 0.36 105.5 

T + 12 153.7 9.87 0.60 0.36 112.2 

T + 15 151.0 9.70 0.60 0.37 105.4 

T + 18 153.6 9.84 0.61 0.37 107.8 

T + 21 142.0 9.43 0.65 0.42 103.0 

T + 24 141.9 9.44 0.64 0.41 102.7 

Table 8:  Convolutional neural network performance metrics. 

Timesteps MSE MAE r R² MAPE 

T + 1 152.7 9.66 0.61 0.37 93.9 

T + 2 167.8 10.12 0.57 0.32 107.7 

T + 3 148.6 9.49 0.62 0.39 93.5 

T + 6 151.5 9.66 0.62 0.39 94.1 

T + 9 167.3 10.24 0.57 0.33 110.1 

T + 12 173.8 10.45 0.57 0.32 109.5 

T + 15 130.3 8.88 0.68 0.46 92.4 

T + 18 150.7 9.56 0.64 0.41 88.9 

T + 21 170.3 10.29 0.59 0.35 107.3 

T + 24 172.2 10.27 0.56 0.31 112.6 
 
 

 

Figure 6:    Graphical comparison of the MSE between the models for each hour predicted 
within the 24-hour period. 
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Figure 7:    Graphical comparison of the R² between the models for each hour predicted 
within the 24-hour period. 

   
(a)                                                                            (b) 

Figure 8:    Long short-term memory predictions for a 7-day period in June 2006.  
(a) Predictions 1 hour ahead; and (b) Predictions 24 hours ahead. 

 
(a)                                                                       (b) 

Figure 9:    Long short term memory predictions for a 7-day period between December 2014 
and January 2015. (a) Predictions 1 hour ahead; and (b) Predictions 24 hours 
ahead. 

     It is possible to observe that the predicted values have the same behavior as the observed, 
especially in the predictions of the next hour, where the predicted values are closer to those 
observed. 
     It is interesting to note that, despite possible changes in the climatological scenario that 
occurred over the years, the model managed to capture the non-linear relationships between 
the various atmospheric parameters used for its training, being able to infer how the 
tropospheric ozone concentrations would behave in the test data. This shows how neural 
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networks, once well trained and generalized, are able to show good results, even in situations 
in which data and patterns never seen before are presented.  
     Fig. 10 shows the loss graph of the training and validation. It is possible to observe that 
there is a difference of about 0.01 of MSE, between the final epoch of the training and 
validation phases, thus showing that the model achieved a good generalization, with no under 
or overfitting.  
 

 

Figure 10:  LSTM model training and validation loss graph. 

6  CONCLUSIONS 
The present work presented the great potential of predicting tropospheric ozone levels in an 
urban area with the use of the long short-term memory recurrent neural network, especially 
for long-term forecasts. The neural network managed to capture the non-linear relationships 
between the various atmospheric parameters used for its training and it was able to infer how 
the tropospheric ozone concentrations would behave in the test data. Health authorities can 
use these kinds of deep learning prediction models as an aid to prevent health problems due 
to exposure to the pollutant. As future work, the model developed will be validated over other 
air monitoring stations in other cities to assess capability to generalize and predict ozone 
levels in urban areas. An ensemble model or a hybrid system that combines the power of 
MLP along with LSTM models can also be developed and validated in order to explore the 
great potential for the prediction of the short to medium-term tropospheric ozone 
concentrations. 
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