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ABSTRACT 
According to a recent study of the World Health Organization (WHO), Osorno, a medium sized city 
in the south of Chile is among the most polluted city in South America. With 150,000 habitants, the 
city has unfavorable conditions for pollutant dispersion. It is located in a valley between the Andes 
mountains and a coastal range. Thermal inversions that trap particles emitted mainly by wood 
combustion used for heating are frequent during fall and winter. Air pollution forecasting models will 
be useful for authorities to implement a policy of restrictions to emissions when necessary. These 
models are also useful for the habitants so that they have the possibility to avoid places where air 
quality is critical, and also so they can choose to restrict physical exercise. The specific 
meteorological and pollution variables (mostly associated with wood combustion) that can be used as 
input for statistical PM2.5 forecasting models are identified. Results obtained with two models based 
on artificial neural network techniques: a multilayer perceptron (MLP) and a radial basis function 
model (RBF) are presented. Both models show comparable accuracy. With them it is possible to 
anticipate, 24 h in advance, more than 80% of the high concentration episodes during 2018. 
Keywords:  air quality forecasting, neural networks, air pollution episodes. 

1  INTRODUCTION 
Osorno is a medium size city located in the south of Chile at 40°57’S and 73°08’W and it is 
900 km south of the capital of the country, Santiago. Average altitude is 19 m over sea 
level and lies in a valley between the Andes mountains and a coastal range. At present, the 
city has a population approaching 150,000 habitants. Fig. 1 shows a satellite picture of  
the city in which we can observe the Andes mountains to the right and the coastal range  
and the Pacific Ocean to the left. Annual average temperature is 11°C, average wind speed 
is 1.6 m/s and average precipitation is 1,300 mm. Most of this rain is concentrated in the 
cold season that can be defined by the period between April and September. It is during this 
cold season that episodes of PM2.5 pollution are observed (annual average is 37 g/m3). 
Most homes use wood stoves for heating and this represents of the order of 90% of PM2.5 
emissions. Fine particulate matter emitted by stoves is not easily dispersed on dry days 
because of unfavourable topographic and atmospheric conditions. Low temperatures 
facilitate the occurrence of thermal inversions due to surface cooling. Under these 
conditions pollutants become trapped bellow an altitude of no more than 100 m [1]. Daily 
concentrations often exceed 170 g/m3 which is defined as an Emergency condition. In 
order to take actions in order to preview these high pollution episodes it seems convenient 
to have in operation a forecasting model. A statistical forecasting model uses historical data 
of meteorological and pollution data in order to fix a number of adjustable parameters and 
rests on the assumption that future behaviour will obey similar functional relation [2]. Most 
used statistical models for particulate matter forecasting are multi linear regressions (MLR), 
multilayer perceptrons (MLP) and radial basis function networks (RBF). Stadlober et al. [3] 
have shown that a MLR model is efficient for the forecasting of daily PM10 in three cities in 
the Alps region. MLP has proven to be a useful tool for NO2 and PM10 forecasting in a 
populated area in China [4]. Lu et al. [5] report a calculation using a RBF model, and they 
claim that this method is faster and more effective than more traditional neural network 
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models for the forecasting of particulate matter and nitrogen oxides. In this paper the 
performance of two PM2.5 forecasting models based on artificial neural networks, a 
multilayer network (MLP) and a radial basis function network (RBF), adapted to Osorno 
conditions is presented. Emphasis is given to forecast high concentrations episodes. 
 

 

Figure 1:  Satellite picture of the city of Osorno. 

2  DATA 
Data analyzed corresponds to years between 2015 and 2018, with emphasis on the cold 
period (April–September). Pollution and meteorological information is obtained from an 
official monitoring station located in the downtown area. According to Chilean pollution 
legislation, PM2.5 24 h average concentrations are classified into five ranges, which from 
low to high concern may be labelled in the following manner: range A, corresponding to 
concentrations bellow 50 g/m3, range B, concentrations between 50 g/m3 and 80 g/m3, 
range C, concentrations between 80 g/m3 and 110 g/m3, range D, concentrations between 
80 g/m3 and 110 g/m3 and range E concentrations greater than 170 g/m3. The Chilean 
standard for this quantity is 50 g/m3, so only days in range A are considered “safe” days. 
The Ministry of the Environment has established a plan for the management of pollution in 
the city which applies for the period between April and September (cold season). During 
cold season, wood stoves do not properly certified are permanently prohibited. The same 
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applies for bush burning. For days in ranges D and E, additional restrictions to emissions 
are enforced. During range D days, industrial and residential boilers identified as 
responsible of high emissions are not allowed to operate. Also, outdoor physical exercise in 
schools is prohibited. In the case of range E days, in addition to restrictions applied on D 
days, the emission of visible smoke from residential heating is banned. 

3  MODELING 
The goal of this study is to forecast the maximum of the 24 h moving average for the next 
day (which defines the range of the day) based on pollution data and meteorology available 
at 19 h of the present day. In this way it is possible to generate an air quality report at 20 h. 
In order to identify the predictor variables to feed the statistical forecasting model, we did a 
correlation analysis of candidate variables with the target variable. The selected predictor 
variables are: 

1) Average PM2.5 concentration between 1 am and 7 pm of present day. 
2) Hourly PM2.5 measured at 7 pm of the present day. 
3) Hourly PM10 measured at 7 pm of the present day. 
4) Average PM10 concentration between 1 am and 7 pm of present day. 
5) Minimum temperature for the next day. 
6) Temperature at 8 am of the present day 
7) Wind speed at 7 pm of present day. 
8) Maximum wind speed for the next day. 
9) Maximum relative humidity for the next day. 
10) Amplitude of wind direction of present day. 

     From this list, variables 5, 8 and 9 are forecasted by an independent meteorological 
model. Variables 1–4 are associated with the tendency of concentrations and are important 
in the evaluation of 24 h averages on the next day. They are indirectly related to the 
intensity of wood combustion. Temperature variables are correlated with wood stove  
usage. Wind related variables are associated with probability of dispersion of particulate 
matter contained in smoke emitted by stoves. Relative humidity is an indicator of the 
presence of rain. 
     Two models based on artificial neural networks are developed. One of them is  
the traditional Multilayer Perceptron trained with the Backpropagation algorithm [6] (see 
Fig. 2). 
     Here, the 10 input variables are connected to units or neurons in the hidden layer by 
means of weights w(1)

ij and activation of these units is calculated by a sigmoid function of a 
linear combination. Every neuron of the hidden layer is connected to the output by means 
of weights w(2)

k and activation of this unit is calculated again by a sigmoid of a linear 
combination. Weights calculated during a training phase by an optimization algorithm 
based on a sample of the available historical data. In our case, 2015, 2016 and 2017 data are 
used for training. Best results are obtained with a hidden layer with 40 neurons. With 
weights fixed, an independent test is performed with 2018 data. 
     The second model is the Basis Radial Function Network (RBF). 
     The main difference between RBF and MLP is that in RBF the inputs are not equally 
connected to the hidden units, but only significantly to those that are within a given 
distance (calculated on the basis of a vector of inputs) from position vectors (that have the 
dimension of the number of inputs) of these hidden neurons [7], [8]. Output value is 
calculated through a linear combination of Gaussian functions centered on the position  
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Figure 2:  The MLP network. 

 

Figure 3:  The RBF network. 

vectors. Position vectors of the hidden layer are calculated by inspection of the input 
variable space, generating segregation by clustering. Weights from hidden layer to output 
are calculated through an optimization algorithm based on a training set. In our case, best 
results were obtained with 1,000 hidden units. Eventually, RBF may be more accurate than 
MLP if this clustering is clearly present in the data. In general, with RBF we have a faster 
training phase and with MLP a faster test phase. MLP has proved to be an efficient 
algorithm for air pollution forecasting in two Chilean cities, for both daily and hourly 
averages and for particulate matter and gas pollutants [9]–[12], but RBF has shown to be 
more accurate than MLP for nitrogen oxide forecasting in Spain [13]. 

4  RESULTS 
The performance of the models is evaluated by testing 2018 data. Indicators of this 
performance are the mean absolute percentage error (MAPE), root mean squared error 
(RMSE) [14] and the global model quality observed in contingency tables, which is 
important to visualize range forecasting. 
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     Table 1 shows the results of the best forecasting MLP and RBF models developed with 
2015, 2016 and 2017 data and tested with 2018 cold season Osorno data. It is observed that 
both models are of comparable accuracy. 

Table 1:  MAPE and RMSE for 2018 Osorno data using MLP and RBF models. 

 MLP RBF 

MAPE 20% 21% 

RMSE 39.6 39.5 

 
     Although from Figs 4 and 5, an apparently similar performance for both models may be 
concluded by plotting observed and forecasted values, a more detailed analysis provided by 
contingency tables (Tables 2 and 3) shows that the MLP model is more accurate on range 
forecasting. This is more evident for range D, 80% agreement using MLP against 71% with 
RBF model, and for range C, 48% agreement with MLP against 39% with RBF. Other 
useful information can be extracted from the contingency tables. As an example, for the 
MLP model, from the 28 observed range E days during 2018, 23 were correctly forecasted, 
3 of them were forecasted as range D and 2 as range C days. It is worth to mention that to 
get the displayed results with the MLP network, a long time for training and adjustment 
with different initial conditions was needed. In the case of the RBF network, the fact the 
best results were obtained with a hidden layer with a number of units of the order of 
magnitude the size of the training set implies that not significant clustering of the input data 
was found. 

 

Figure 4:    Observed and forecasted maximum of next day PM2.5 24 h average using MLP 
model. 2018 Osorno test data. Horizontal line indicates level of range E. 
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Figure 5:    Observed and forecasted maximum of next day PM2.5 24 h average using RBF 
model. 2018 Osorno test data. 

 

Table 2:  Contingency table for observed and forecasted ranges using MLP model. 

 
 Forecast MLP model   

A B C D E TOT %O 

O 
B 
S 

A 13 33 8 0 0 54 24 

B 1 16 12 6 0 35 46 

C 2 3 15 10 1 31 48 

D 0 1 5 28 1 35 80 

E 0 0 2 3 23 28 82 

TOT 26 53 42 47 25 183 47 

% F 81 30 35 60 92   
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Table 3:  Contingency table for observed and forecasted ranges using RBF model. 

 
 Forecast RBF model   

A B C D E TOT %O 

O 
B 
S 

A 20 24 9 1 0 54 37 

B 4 6 17 7 1 35 17 

C 1 4 12 13 1 31 39 

D 0 1 5 25 4 35 71 

E 0 0 2 3 23 28 82 

TOT 25 35 45 49 29 183 47 

% F 80 17 27 51 70   

5  CONCLUSIONS 
This study shows that with an appropriate choice of input variables it is possible to 
implement operational PM2.5 statistical forecasting models based on artificial neural 
network algorithms for the city of Osorno, Chile. The best predictors that apply to this city 
differ from those used for PM2.5 forecasting models in other cities, which may be associated 
with particularities of this locality. This may help the authorities to take actions in order to 
protect the population from high levels of pollution. All indicates that shift to heating 
systems not based on wood combustion would improve air quality significantly. 
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