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ABSTRACT 
In 2015 up to 30% of Europeans were living in cities with air pollutant levels exceeding European 
Union (EU) air quality standards, and around 95% were exposed to high concentrations, namely 
particulate matter (PM), deemed damaging to health accordingly to the World Health Organization 
(WHO) Air Quality Guidelines. In order to reduce air pollution effects, particularly in cities where the 
majority of the population lives, it is important to define effective planning strategies for air quality 
improvement. For this purpose, the ongoing project LIFE Index-Air aims to develop an innovative and 
versatile decision support tool for policy makers, based on an integrated modelling approach, from 
emissions to health effects, which will help to identify measures to improve air quality, reducing PM 
levels, and quantitatively assess their impact on the health and well-being of the populations. Five 
European urban areas will be considered, Lisbon (Portugal), Porto (Portugal), Athens (Greece), Kuopio 
(Finland) and Treviso (Italy) at high spatial and temporal resolution, covering PM10, PM2.5 and metal 
elements regulated by EU legislation. For now, the WRF-CAMx air quality modelling system was 
applied to the Portuguese domains with a spatial resolution of 0.01° (~ 1 km) for 2015. The EMEP 
emission inventory for 2015 with a spatial resolution of 0.1° and including metal species was 
considered. For the finest resolution domains (urban) the EMEP emissions were disaggregated to 1x1 
km2, based on spatial proxies and emission sources locations. This paper shows the preliminary air 
quality modelling results, and presents the methodology, based on Artificial Neural Networks (ANN), 
which will allow to quickly test different measures to improve air quality and to reduce air pollution 
effects. 
Keywords: PM10, health, WRF-CAMx, air quality modelling, Artificial Neural Networks. 

1  INTRODUCTION 
Good air quality is still a challenge in the world and in Europe in particular. The latest “Air 
quality in Europe” report, delivered by the European Environment Agency [1], indicates that 
air quality policies have led to many improvements. However, European urban populations 
are still partially exposed to air pollution that surpasses European standards and, principally, 
the World Health Organization (WHO) Air Quality Guidelines, with considerable impacts, 
on both human health and the environment [2]–[4].  
     The concentrations of air pollutants result from a range of atmospheric processes 
including atmospheric transport, mixing and chemical transformations. Nowadays, nitrogen 
dioxide (NO2), tropospheric ozone (O3) and particulate matter (PM), in particular the ones 
with an aerodynamic equivalent diameter less than 2.5 µm (PM2.5), are strongly affecting 
human health and are associated with increased mortality and morbidity [5]. Estimates of the 
health impacts attributable to exposure to air pollution indicate that PM2.5 concentrations in 
2014 were responsible for about 399,000 premature deaths originating from long-term 
exposure in EU-28. The estimated impacts on the population of exposure to NO2 and O3 
concentrations in 2014 were around 78,000 and 14 400 premature deaths per year, 
respectively [1]. 
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     Even if there are many possible interventions that can be made at the city scale, through 
measures, such as investment in public transport, low emission zones (LEZ), changes in 
heating and cooling systems, it is difficult for policy-makers to quickly assess the 
consequences of measures on local air quality. The ongoing LIFE Index-Air project 
(http://www.lifeindexair.net) intends to develop an innovative and versatile decision support 
tool for policy makers that will help to identify measures to improve air quality and 
quantitatively assess their impact on the health and well-being of the population. The tool 
will be tested by its implementation in 5 European cities, Lisbon, Porto, Athens, Kuopio and 
Treviso. The present work is part of this research project and aims to present the first 
modelling results and the methodology used to facilitate the assessment of different strategies 
to improve air quality. 
     The paper is organised as follows. In Section 2, the modelling approach is described in 
detail. Section 3 focuses on the analysis of the first modelling results and the Section 4 details 
the methodology used inside the tool. Finally, in Section 5, the main conclusions are 
summarized. 

2  THE MODELLING SYSTEM AND ITS SETUP 
Numerical modelling has become a fundamental tool to support decision makers on air 
quality management due to its capacity to estimate atmospheric pollutants concentrations 
over the entire region of interest, taking into account complex and non-linear physic and 
chemical mechanisms that characterize the atmosphere, as well as to evaluate the efficiency 
of emission reduction scenarios.  

2.1  The WRF-CAMX modelling system 

The air quality modelling system applied in this study includes the Weather Research and 
Forecasting (WRF, version 3.7.1) model (WRF) [6] and CAMx (Comprehensive Air Quality 
Model with Extensions) chemical transport model [7]. Its input-output structure is 
schematized in Fig. 1. The WRF model was developed by the National Center for 
Atmospheric Research (NCAR) and is a next generation mesoscale numerical weather 
prediction system designed to serve both operational forecasting and atmospheric research 
needs. CAMx is a three-dimensional (3D) chemical transport model suited for the simulations 
of the emission, dispersion, chemical reactions, and removal of pollutants in the troposphere 
based on the integration of the continuity equation for each chemical species on a system of 
nested 3D grids. This modelling system has been extensively applied for Portugal and 
worldwide [8]–[11]. 

2.2  Modelling setup and application 

The WRF-CAMx air quality modelling system was selected to be applied under Index-Air 
according to its suitability to simulate the meteorological conditions and the atmospheric 
concentrations of particulate pollutants for the study regions, including the speciation into Ni 
(Nickel), As (Arsenic), Cd (Cadmium), Pb (Lead), as the elements regulated by the air quality 
legislation. It was applied to a past year, 2015, for validation with data acquired in air quality 
monitoring stations operating on a regular basis in the study regions.  
     Meteorological inputs to the chemical simulations were driven by the meteorological 
model WRF, forced by ERA Interim reanalysis data from ECMWF (European Centre for 
Medium Range Weather Forecast) at 6 hours and 0.75 degrees temporal and spatial 
resolution, respectively. 
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Figure 1:    The input–output structure of the modelling system WRF-CAMx applied in  
this study. 

     Initial and boundary conditions for the first domain are provided by the global chemical 
model MOZART [12] with a time resolution of 6 hours. 
     Anthropogenic emissions were taken from the most recent European emission inventory 
based on Member States submissions for the year 2015. The EMEP inventory, with an 
horizontal resolution of 0.1° (approximately 10 km), comprising annual emission totals by 
activity sector for gases and particulate species including metals, was disaggregated to the 
case study modelling domains and speciated into the CB6 chemical mechanism gaseous 
species and into the default particulate species considered by CAMx. The chemical 
mechanism description and treatment was adapted to additionally include the metal species 
as inert particles. 
     In order to improve the spatial resolution of the emission inventory, the emissions were 
spatially disaggregated to 1 km resolution considering different proxies. The following 
Selected Nomenclature for Air Pollution (SNAP) activities were considered: public power 
stations (SNAP1); commercial and residential combustion (SNAP2); industrial combustion 
(SNAP3); production processes (SNAP4); extraction and distribution of fossil fuels and 
geothermal energy (SNAP5); solvent and other product use (SNAP6); road transport 
(SNAP7); other mobile sources and machinery (SNAP8); waste treatment and disposal 
(SNAP9), agriculture (SNAP10). In particular, in case of SNAP1 the specific location of 
public power stations was considered, in SNAP2 a “bottom up” approach was used, taking 
into account the wood consumption per district, the type of residential combustion 
equipment, and emission factors from the Portuguese Agency for the Environment (APA) 
[13] (see Fig. 2). For SNAP3 and 4 the location of industries was considered based on 
national land use data. For SNAP5 and 6 the buildings locations, using the information from  
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Figure 2:    Total PM10 residential combustion emissions for Lisbon domain considering 
EMEP (left) and spatial disaggregation (right). The reference year is 2015. 

the OpenStreeMap was considered. Regarding SNAP7, road traffic emissions were estimated 
applying the Transport Emission Model for Line Sources (TREM) [14] and using traffic 
counts, average vehicle speed, and statistical fleet data. For SNAP8 the airport and port 
location were considered. Lastly the national land use data regarding farming fields was used 
to spatially disaggregate emissions of SNAP10. Fig. 2 displays the original EMEP emissions 
for SNAP2 (resolution of 10 km) on the left and the disaggregated ones on the right (1 km of 
horizontal resolution) for the Lisbon case study domain. 
     Fig. 2 shows that residential emissions are mainly concentrated in Sintra, Cascais, 
Odivelas, and Amadora municipalities. In Lisbon municipality the emissions are more 
reduced due the use of different heating systems. Even using a different approach, the EMEP 
inventory with an horizontal resolution of 0.1 degrees is able to generically represent the 
spatial distribution of PM10 emissions from residential combustion sector. The high spatial 
desegregated emissions (1x1 km2) from the different SNAP macrosectores were then used as 
input to WRF-CAMx to simulate the concentration fields (1-hour resolution) over Lisbon. 

3  FIRST MODELLING RESULTS  
In this section the WRF validation results for the Portuguese domains (Porto and Lisbon) are 
presented (Fig. 3) as well as the WRF-CAMx results for Lisbon (Fig. 4).  

3.1  Meteorology 

The WRF was applied for the five Index-Air case studies following a two-way nesting 
technique in the WRF model for three domains (Fig. 3): D-1 with 25 km spatial resolution 
centered in Europe a covering also Northern Africa and part of the Atlantic Ocean, and it is 
intended to capture synoptic features and general circulation patterns. D-2, with a spatial 
resolution of 5km, comprises Portugal, and the innermost domain (D-3) reaching 1 km 
resolution over each urban area. 
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Figure 3:    WRF domains used in the simulations: D-1 covering Europe, with a resolution 
of 25 km, D-2 with a resolution of 5 km and reaching 1 km in the innermost 
domains (D-3) which covers the different cities. 

     Statistical results from the evaluation of WRF outputs for Lisbon and Porto are presented 
in Table 1. The meteorological stations in Lisbon (Gago Coutinho) and Porto (Pedras Rubras) 
are both situated in the Atlantic coastal zone. The statistical parameters BIAS (tendency of a 
statistic to overestimate or underestimate a parameter), NMSE (Normalised Mean Square 
Error) and r (coefficient of correlation) were computed. 
     The results indicate a good agreement between the model estimates and the measurements 
in both cities, with a better performance for temperature. The WRF tends to underestimate 
temperature and wind speed in the Porto domain, and to overestimate these parameters in 
Lisbon. In general, WRF shows a good performance simulating the meteorological data, 
which is in agreement with other studies where the WRF model was applied for Portugal.  

3.2  Air quality 

Fig. 4 shows the spatial distribution of Pb and PM10 monthly average concentrations over the 
Lisbon domain for January 2015. The small dots over the map represent the air pollution 
measurements. 

Table 1:    Statistical analysis of WRF model results for Porto and Lisbon meteorological 
stations data considering the temperature and wind speed for January 2015. 

 Statistical Parameters 

 Porto – Pedras Rubras Lisbon – Gago Coutinho 
Variable BIAS NMSE r BIAS NMSE r 

Temperature (°C) -0.05 0.01 0.96 0.03 0.01 0.97 

Wind speed (m/s) -0.58 0.12 0.73 0.16 0.03 0.89 

D-1

D-2D-3 
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(a) 
 

(b) 

Figure 4:    Monthly average concentrations of Pb (a) and PM10 (b) over the Lisbon domain 
for January 2015. 

     It is possible to observe that over the Lisbon domain there is an area where the Pb 
concentration is higher (up to 0.1 µg/m3), the Seixal municipality where the main steel 
plant of Portugal is located. The remaining domain area is characterized by very low 
concentrations, taking in account that the air quality annual limit value for Pb is 0.5 µg/m3.  
     In relation to PM10 the highest concentration values can be found over Lisbon 
municipality. These can be related with higher traffic emissions compared to other 
surrounding municipalities. The comparison with measurements (small dots) shows that the 
modelling system is generically overestimating the PM10 concentrations. 

4  THE METHODOLOGY USED WITHIN THE TOOL  
Air quality modelling simulations by means of WRF-CAMx cannot directly be used inside 
the Index-Air management tool to simulate the link between precursor emissions and air 
quality indexes due to their computational time. Aiming to integrate the air quality and 
exposure components in the tool, a new approach was defined. Artificial Neural Networks 
(ANN) will be used to simulate the nonlinear source–receptor relationship between 
concentrations and the emission of precursors.  
     To identify ANN it is first necessary to select the model type, architecture and an input 
shape adequate to the domain under study and, then, to identify a set of emission-
concentration scenarios, that need to be simulated using WRF-CAMx. When figuring out the 
most suitable input shape it is assumed that the air quality index (AQI) (e.g. annual mean 
PM10 concentration) values in a given cell can also depend on the precursor emissions in 
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distant cells. A second key factor, to be taken into account, concerns dominant wind 
directions. A technique already presented in literature [15] allows considering these two 
relevant aspects by aggregating the emissions from cells belonging to four triangular slices, 
located around the cell for which the AQI has to be computed. 
     This configuration has the advantage of being adjustable to different conditions by 
modifying the dimensions of the quadrants. After defining the input shapes, for the 5 Index-
Air cities, a minimum set of WRF-CAMx simulations is required to provide data for the ANN 
calibration and validation. Given the high flexibility of the surrogate model structure adopted 
in this work (feed-forward neural network), and based on previous works, we estimate that a 
series of 10 emission reduction scenarios allows identifying the ANN parameters with 
sufficient accuracy. This minimum number of scenarios has to reproduce all the possible 
precursor emissions variations.   
     Finally, after training, the trained ANN will be uploaded in the Index-Air tool (as a .csv 
file) allowing a quick estimation of air pollutant concentrations values based on a variation 
on precursor emissions, for each one of the 5 cities. 

5   SUMMARY AND CONCLUSIONS 
This work shows the first results and the applied overall methodology used to develop an 
innovative and versatile decision support tool for policy makers, based on an integrated 
modelling approach. The numerical modelling approach was used to simulate air quality over 
Lisbon (1x1 km2). Modelling results point out that the WRF-CAMX modelling system is 
able to reasonably simulate meteorology and concentration fields over Lisbon, making 
possible to continue the simulation of emission reduction scenarios in order to provide inputs 
to ANN training and validation. 
     The decision support tool will be able to provide air quality maps and to estimate health 
impacts allowing testing quickly several abatement measures. Despite the potential of this 
kind of tools, action on air quality also requires much stronger and regular discussion 
between local and national authorities, and integrated approaches combining different policy 
areas.  
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