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ABSTRACT 
We have made a comparative study about the nonlinear behaviour of PM2.5 hourly average 
concentrations, which were measured at some of the most polluted mid-sized cities located in the South 
of Chile. The chosen cities were Chillán, Coyhaique and Temuco where high PM2.5 concentrations 
concentrated in the winter season are caused by the intensive use of wood for heating. The city of 
Cochabamba, Bolivia, has also been included in this study, due to its very high level of atmospheric 
pollution by PM10 (especially in the winter season).This city is at a greater height compared to the 
Chilean cities. Using nonlinear tools, as Wavelet, Recurrence Plots, and Phase Portrait we have 
investigated the behaviour of PM2.5 and PM10 (hourly) concentrations. Wavelet spectrum and global 
amplitude for the more polluted cities in study was calculated. Spectral descomposition was performed  
in time-frecuency through Morlet’s wavelet transform and their global amplitud  in time and energy, 
concentrated around the most importants peaks. On the other hand, a graphical tool that shows typical 
patterns of dynamic behaviour is the recurrence graph allowing extraction of qualitative characteristics 
from  time series. This method was applied for all cities in study showing patterns that differ from a 
noisy or random signal. Also the technique of phase-portrait analysis was implemented, showing typical 
dynamical patterns of non-linear time series, different to a noisy signal pattern. Finally, it was found 
that hourly airborne particle concentrations exhibit a possible chaotic behaviour, related to short-term 
predictability some hours ahead.  
Keywords: PM2.5, wavelet, recurrence plots, phase portrait, AMI, FNN. 

1  INTRODUCTION 
Air pollution (e.g. SO2, NOx, PM2.5, O3, etc.) has been a major concern after the evidence that 
the level of pollution is strictly associated with the health of human beings. Especial attention 
has received PM10, particulate matter (PM) with diameter up to 10 m. This pollutant reaches 
significantly high concentrations in the metropolitan area of Santiago, the capital of Chile 
and has been a matter of concern for authorities during the last 30 years. Between April and 
August, dispersion of atmospheric pollutants in the valley is poor, which is related to strong 
surface thermal inversions, associated to anticyclone conditions at a regional scale. During 
this period of the year, frequent episodes with high concentrations of PM10 are observed and 
some restrictions to sources of emission are imposed. Epidemiological studies indicate also 
that concentrations of fine particulate matter (particles with aerodynamic diameter less than 
2.5 m, PM2.5) have considerable impact on human health, even at concentrations below the 
present ambient air quality standards. These particles are more harmful than coarse 
particulate matter [1]–[3]. PM2.5 particles can penetrate the respiratory tract and have toxic 
effects in heart (Brook et al. [4]), cardiovascular disease (Lee et al. [5]) and lungs [6]–[8]. 
The main sources of PM are the vehicular traffic, dust of the streets generated by the 
circulation, and emissions from wood stoves. 
     Very few countries have a PM2.5 standard. In the United States, a 24-h PM2.5 standard of 
65 gm3 was established in 1997, a value that was recently lowered to 35 g m3. The 
standard for the annual average is 15 g m3. The World Health Organization (WHO) has 
recently recommended that in order to avoid significant harmful effects in the population, the 
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PM2.5 24-h average should not exceed 25 g m3 and that the annual average must not exceed 
10 g m3 [9]. Since January 2012, Chile has a PM2.5 standard. 24-h average standard is 50 
g m3 and the annual average should not exceed 20 g m3 [10].  Concentrations of PM2.5 
not only in Santiago but in several mid-sized cities, especially from South of Chile, often 
exceed the recommended maximum levels. These exceedances are concentrated during the 
period between April and August indicating a clear seasonal fall–winter effect. In this period, 
strong thermal inversions are observed (which do not occur in spring and summer). The main 
source of PM2.5 emissions in mid-sized city, is the intense use of wood stoves for heating in 
winter. Cities like Chillán, Temuco and Coyhaique, have experienced severe short-term 
pollution events that are harmful to human health. (For more details on mid-sized Chilean 
cities, see Salini [11]). 
     Bolivia has an environmental regulation promulgated in the year 1992 [12]. According to 
this law, limit concentration for diameter particles smaller than 10 m (PM10) is 150 g m3 

for 24 h and 50 g m3 for the annual average. Salini and Medina have performed a study of 
PM10 time series analyzing the poor air quality at Cochabamba city through statistical tools 
used in studies on nonlinear dynamics [13]. The daily average of PM10 follows patterns 
similar to large cities with high of environmental pollution patterns. One of the parameters 
resulted from the same order and characteristic as those presented in similar studies on the 
chaos in pollution variables such as ozone, PM2.5, CO, demonstrating the chaotic origin of 
these data.  
     In this paper, the author uses a different nonlinear approach in order to support the fact 
that air pollution is a complex and nonlinear dynamic system (Sprott [14]). The author has 
analyzed PM2.5 time series in mid-sized cities, from South of Chile and PM10 from 
Cochabamba, Bolivia, during recent years and have calculated relevant nonlinear parameters. 
The complexity of such time series has made its interpretation very difficult. The aim of this 
study was to explore the relation between complexity and chaos theory based on the 
particulate matter concentration, applying wavelet tools to PM2.5/PM10 time series 
concentrations and displayed the results obtained by these techniques. Recurrence plots and 
phase space are other type of mathematical tools applied to such time series. The author has 
applied nonlinear mathematical tools successfully in previous works (Salini and Pérez [15], 
Salini and Pérez [16], Salini and Medina [13]). The results obtained through these new 
methodologies give rise to the application of more advanced tools that give light on the 
complexity of these time series consisting of particulate matter concentrations, such as 
Recurrence Quantification Analysis (RQA). This work is part of research project 
DIN13/2016. 

2  STUDY AREA AND DATA DESCRIPTION 

2.1  The data 

For all three chilean cities the available data covers a period of ten years between 2007 and 
2016.  PM2.5 time series concentration consisting of hourly databases and were collected from 
MACAM III monitoring systems of SINCA (Chilean Air Quality Information System, [17]) 
depending of the Ministry of Health, being maintained by the Chilean Ministry of the 
Environment [18]. The monitoring station at Chillán was Purén; Museo Ferroviarion was the 
monitoring station for Temuco, and Coyhaique II for Coyhaique (Fig. 1). 
For Cochabamba, the PM10 hourly databases are from 2009 to 2012, available from Kanata 
Park station. It was obtained from the MoniCA Network system [19] and the Bolivian 
Ministry of Environment and Water [20].  
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Figure 1:    Location of PM2.5 monitoring stations in cities localized at South of Chile. 
(Source:  adapted from [18].) 

2.1.1  The Chilean cities 
The cities under study were the most polluted from South of Chile, and Table 1 shows the 
detailed information about these three cities, where we can see the data of annual average of 
PM2.5 (2015). 

2.1.2  The Bolivian city 
The city of Cochabamba lies between 17°23' south latitude and 66°9' west longitude of the 
Greenwich Meridian, located at a height of 2558 m a.s.l. being located in the center of the 
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country [13]. It is furrowed by the Eastern branch of the Mountain range of The Andes 
Mountains, located in the valley of the same name, being capital of the Department of 
Cochabamba and the province of Cercado, Fig. 2. It has a population of 616021 inhabitants, 
in an area of approximately 55631 km2.  

3  METHODOLOGY 
Three methods have been applied to analysis PM2.5 and PM10 concentration: wavelet, phase 
space and recurrence plots. In all three methods average mutual information (AMI) was 
evaluated for determining the lag () and False Nearest Neighbours (FNN) for determining 
the embedding dimension (m) because of the non-linear nature of particulate matter 
concentration [15], [16]. 

3.1  Wavelet 

Wavelet analysis (Mallat [21], Torrence and Compo [22]) is a particular time- or space-scale 
representation of signals which has found a wide range of applications in physics, geophysics, 
signal processing and applied mathematics in the last years.  

Table 1:  Geopolitical information of cities in Southern Chile. (Source: adapted from [14].) 

 

 

Figure 2:    Location of PM10 monitoring stations in Cochabamba urban area. (Source: 
adapted from [13].) 

City Lat. (°) Lon. (°) Region 
Elevation 
(m a.s.l.) 

Population 
PM2.5 

 (g m3 ) 

Chillán 
36° 36' 
24" S 

72°6' 12" W Bío Bío 124 175.869 32 

Temuco 
38° 44' 0" 

S 
72°36' 0" W Araucanía 122 260.878 33 

Coyhaique 
45° 34' 0" 

S 
72°04' 0" W Aisen 310 82.071 55 
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     Let x(t) be a time series and a,b  a wavelet (real or complex) defined by 
 

Ψ௔,௕ ൌ  Ψ଴ሺ
௧ି௕

௔
ሻ,                                                        (1) 

 
where a is a dilatation control if a >1 or contraction if a < 1 of 0 function, and b is a 
temporary displacement variable. 
     The continuous wavelet transform is defined as the convolution between x (t) and a,b  
given by 
 

𝑇ሺ𝑎, 𝑏ሻ ൌ
ଵ

√௔
׬  𝑥ሺ𝑡ሻ

ஶ
ିஶ Ψ଴

∗ሺ
௧ି௕

௔
ሻ𝑑𝑡,                                      (2) 

 
where 0

* is the conjugate complex of 0 and 1/a is the normalization factor for 0. 
     Most real-life signals are nonstationary and cover a wide range of frequencies. Standard 
Fourier analysis is inadequate for treating such signals, since it loses all information about 
the time localization of a given frequency component.  
     Wavelet transform can be used to analyze time series pollution that contain nonstationary 
power at many different frequencies. Morlet wavelet is used to analyze PM10/PM2.5 time 
series, consisting of a plane wave modulated by a Gaussian: 
 

ψ଴ሺ𝜈ሻ ൌ  𝜋ିଵ/ସ𝑒௜ఠబ𝑒ିఔమ/ଶ,                                              (3) 

where 0 is the dimensionless frequency. 

3.2  Phase portrait 

The fundamental starting point of many approaches in nonlinear data analysis is the 
construction of a phase space portrait of the considered system. The state of a system can be 
described by its state variables 

ሼ𝑥ሺ𝑖ሻሽ௜ୀଵ
ௗ .                                                            (4) 

     The d state variables at time t form a vector in a d-dimensional space which is called phase 
space. The state of a system typically changes in time, and, hence, the vector in the phase 
space describes a trajectory representing the time evolution (the dynamics of the system). 
The shape of the trajectory gives hints about the system; periodic or chaotic systems have 
characteristic phase space portraits [13]. The observation of a real process usually does not 
yield all possible state variables. Either not all state variables are known or not all of them 
can be measured. However, due to the couplings between the system's components, we can 
reconstruct a phase space trajectory from a single observation ui by a time delay embedding. 
Takens’ theorem statement that it is possible to reconstruct the original phase-space of a 
dynamical system from embedding vectors, eqn (5), of univariate measurements of the 
system state, if the embedding dimension m is sufficiently greater than the dimension of the 
underlying system. (Takens [23]). This reconstruction of the phase space is called time delay 
embedding. The phase space reconstruction is not exactly the same to the original phase 
space, but its topological properties are preserved, if the embedding dimension is large 
enough (the embedding dimension has to be larger than twice the phase space dimension, or 
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exactly m > 2 d + 1). And this reconstructed trajectory is sufficient enough for a subsequent 
analysis [24], [25]. 

3.3  Recurrence plots  

Recurrence plot is a graphical tool (Eckmann et al [26]) that depict the different occasions 
when dynamical systems visit the same region of phase space, extracting qualitative 
characteristics of a time series (of a simple observable variable, as particulate matter, in this 
case). The recurrence of a state i at a different time j is pictured within a 2-dimensional 
squared matrix with white and black dots, where both axes represent time, and black dots 
represent a recurrence of a system. 
     Given a scalar time series, as eqn (4), a recurrence plot is constructed by first embedding 
the time series into a multi-dimensional space of vectors whose coordinates are present and 
lead values of the series,  

 
𝑦ሺ𝑖ሻ ൌ ሼ𝑥ሺ𝑖ሻ, 𝑥ሺ𝑖 ൅ 𝜏ሻ, 𝑥ሺ𝑖 ൅ 2𝜏ሻ, … , 𝑥ሺ𝑖 ൅ ሺ𝑚 െ 1ሻ𝜏ሻሽ்,                        (5) 

 
where m is the embedding dimension and  is the time delay. Then, mathematically a 
recurrence plot (RP) is expressed as:  
 

𝑅௜௝ሺ𝜀ሻ ൌ ൜
0, 𝑖𝑓 ‖𝑦ሺ𝑖ሻ െ 𝑦ሺ𝑗ሻ‖ ൐  𝜀

1, 𝑖𝑓  ‖𝑦ሺ𝑖ሻ െ 𝑦ሺ𝑗ሻ‖ ൑  𝜀 
   ∀𝑖, 𝑗 ൌ 1,2, … , 𝑛, 𝑛 ൌ 𝑁 െ ሺ𝑚 െ 1ሻ𝜏,     (6) 

 
where  is a threshold distance,    a norm (usually Euclidean), N the number of state 
considered. From this definition, it is observed that Rii = 1 (i=1,…,N) and the RP has  a black 
diagonal line called line of identity. In addition, RP are symmetrical with respect the line of 
identity, because Rij = Rji. Then, patterns formed by adjacent recurrence points show evidence 
of determinism and periodicity in the system. On the other hand, diagonal lines parallel with 
the line of identity occur when segments of the trajectory visit the same region of the phase 
space at different time, being the length of these lines determined by the duration of these 
visit. Horizontal and vertical lines suggest stationary states (the system persist in the same 
region). Isolated recurrence points may occur when states are rare, showing large fluctuations 
or little persistency. Finally, deterministic systems tend to present long diagonal lines and 
few isolated points. However, stochastic systems present mostly isolated points and very 
short diagonal lines [27]–[30]. 

4  RESULTS AND DISCUSSION 

4.1  Phase space 

Fig. 3 shows 3-D projections of the state space trajectories obtained from the PM2.5 and PM10 
time series pollution. The Fig. correspond to attractor in 3-D embedding phase-space 
reconstructed for each time series concentrations. These plots are typical of chaotic systems.  
     The phase space plots for noise almost fill all state space. These results are similar to that 
in [13] and [16]. 
     Chelani et al. [31] performed a careful investigation of the space space of NO2 
concentration at industrial, residential and commercial sites – in Kolkata, India- founding 
similar results to the author.  On the other hand, Aceves-Fernandez et al. [30] applied 
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Figure 3:    Phase Space of PM2.5 for monitoring station in Chillán urban area and PM10 

monitoring stations in Cochabamba urban area.  

recurrence plots to different gases and PM10 at Mexico City, finding similar result to the 
author, which can see in Fig. 4. Therefore, the pattern generated using our methodology are 
similar to [30]. It would be interesting to apply a quantitative method to this type of tool, to 
have more certainty of the results obtained quantitatively, as recurrence quantitative analysis 
(RQA) or another type of equivalent tool.  

4.2  Recurrence plots  

Fig. 4 presents recurrence plots for PM2.5 for monitoring station of cities from South of Chile, 
and PM10 Parque Kanata monitoring stations in Cochabamba urban area. According to 3.3 
section, these plots show evidence of determinism and quasi-periodicity in the system, 
because they tend to display long diagonal lines and few isolated points. From the other hand, 
stochastic system and noise data present mostly isolated points and very short diagonal lines. 
Then, our pollution series present signs of chaos, confirming the author's hypothesis. Both 
axes on the RP show time (or number of iteration), while the colour scale represents the 
distance from a point on the diagonal to all other points on the trajectory. Is worth to say, the  
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Figure 4:    Recurrence plots of PM2.5 for Coyhaique monitoring station from South of Chile, 
and PM10 monitoring stations in Cochabamba urban area.   

colour of each point represents how similar the x time is to y time in terms of PM2.5 or PM10. 
Thus, the colour intensity allows for estimation of the strength of an attractor. 

4.3  Wavelet spectrum 

 Wavelet spectrum and global amplitude for the polluted cities under study was applied, 
where their spectral descomposition was developed in time-frecuency through Morlet’s 
wavelet transform and their global amplitud of wavelets in time and the energy concentrated 
around the most importants peaks. Here the results are presented for only one station for PM10 
and PM2.5, because for the other stations the results are similar. 
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     The time series of Coyhaique I monitoring station for PM2.5 shows the evolution of this 
pollutant from March 2013 to August 2016. From Fig. 5 it is observed that the amplitude 
exceeds the value of 1000 (g m3)2 in winter. The blue contours show low powers close to 
zero, while the more intense red colours correspond to power zones greater than 215 (g m3)2. 
The black line represents the cone of influence (COI) where data located outside cannot be 
interpreted due to edge effects. From Fig. 5 it can be observed that the time series is 
modulated by the annual cycle, which presents a power between 212 and 215 (g m3)2. There 
is also a high activity in the winter season, which extends from April to September of each 
year. However, there is a decrease in the summer season (between October and March) with 
a power between 23 and 26 (g m3)2. Here a high activity is observed in the half-day and 
daily cycle, which remains high throughout the month. The power averaged over time shows 
three important peaks: annual cycle, half-day cycle and daily cycle. 
     The time series of the Kanata Park monitoring station for PM10 shows the evolution of 
this pollutant from March 2009 until the end of 2012. It is observed in winter that the 
amplitudes reach values of up to 600 (g m3)2 every year under study. The blue contours 
show low powers close to zero, while the more intense red colours correspond to power zones 
greater than 215 (g m3)2. The black line represents the influence cone where data located 
outside it cannot be interpreted due to edge effects. From Fig. 6 it can be observed that the 
time series is modulated by the annual cycle, which presents a power between 29 and 212 (g 
m3)2. There is also a high activity in the winter season, which extends from April to 
September of each year. However, there is a decrease in the summer season (between October 
and March) with a power between 24 and 26 (g m3)2. Here a high activity is observed in the 
half-day and daily cycle, which remains high throughout the month. 
     Shen et al. [32] have applied this methodology to Air pollution index (API) records in 
Nanjing, China from January 2001 to December 2012, by means of Morlet wavelet 
transformation, founding similar result to the author. 
 
 

 

Figure 5:    Contour plots of wavelet coefficient for PM2.5 at Coyhaique I monitoring station.  
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Figure 6:    Contour plots of wavelet coefficient for PM10 at Kanata Park monitoring station.  

5  CONCLUSIONS 
In this study, nonlinear analysis of PM2.5 and PM10 data observed at three sites in three mid-
sized cities from South of Chile was performed to characterize the time series. The analysis 
of the PM2.5 and PM10 time series shows its chaotic behaviour using phase portrait and 
recurrence plots. It is suggested to perform a quantitative study using a methodology similar 
to the recurrence plots, as recurrence quantification analysis (RQA). On the other hand, 
contour plots of wavelet coefficients for the PM2.5 and PM10 time series shows the periodic 
trend for all PM2.5/PM10 time series concentrations in study. The global power spectrum 
shows three important peaks: annual, daily and half-day cycle in all PM2.5/PM10 

concentrations.  
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