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ABSTRACT 
One of the most influential factors on human health is air pollution, such as the concentration of PM10 
and PM2.5 is a damage to a human. Despite the growing interest in air pollution in Korea, it is difficult 
to obtain accurate information due to the lack of air pollution measuring stations at the place where the 
user is located. Deep learning is a type of machine learning method has drawn a lot of academic and 
industrial interest. In this paper, we proposed a deep learning approach for the air pollution prediction 
in South Korea. We use Stacked Autoencoders model for learning and training data. The experiment 
results show the performance of the air pollution prediction system and model that proposed. 
Keywords: fine dust, PM10, PM2.5, air pollution prediction, deep learning. 

1  INTRODUCTION 
One of the most influential factors on human health is air pollution, such as the concentration 
of PM10 and PM2.5 is a damage to a human. Hence, information about air quality is a great 
importance to protect human health and control air pollution. In May 2016, Korea’s air 
quality was ranked 173 out of 180 countries, and the ultra-fine dust exposure was ranked 174 
out of 180 countries. Particularly, fine dusts contain a large number of carcinogens, thereby 
increasing the incidence of various diseases. Therefore, the fine dust is regarded as the first 
risk factor of public health concern of the Korean people. According to data from the Max 
Planck Institute in Germany, the global death toll from air pollution is about 3.9 million per 
year, which is higher than the death rate from AIDS and malaria. According to the World 
Health Organization (WHO), 38,000 people die annually from air pollution in Korea. 
     However, at present, Korea has limited air pollution measurement stations such as fine 
dust and ozone, so it cannot obtain accurate air pollution information of the place where it is 
desired or the activity place. Fig. 1 shows the air pollution monitoring station of South Korea. 
Deep learning is a type of machine learning method has drawn a lot of academic and 
industrial interest [1]. In this paper, we propose a deep learning-based method for fine dust 
prediction. We use the deep learning algorithm to build a spatiotemporal prediction 
framework, which considers temporal and spatial relations of the dataset in modelling 
process. This model can predict the fine dust of all cities in South Korea and shows an 
accuracy of the process. 
     This paper is organized as follows. The related works are given in Section 2. Methodology 
is presented in Section 3. The experiments and results are conducted in Section 4. Finally, 
some conclusions will be shown in Section 5. 

2  RELATED WORKS 
A novel of spatiotemporal deep learning (STDL)-based air quality prediction method [2] 
considers spatial and temporal correlations are proposed. The stacked autoencoders (SAE) 
model is used to extract inherent air quality features, and it is trained in a greedy layer-wise 
manner. In [3], the stacked autoencoder model is used to learn generic traffic flow features 
and it also trained in a greedy layer-wise fashion. 
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Figure 1:  The air pollution monitoring station of South Korea. 

     A multitask learning (MTL) [4], a multi-task regression layer is used above the Deep 
Belief Networks for supervised prediction and investigate homogeneous MTL and 
Heterogeneous MTL for prediction. 

3  METHODOLOGY 
The stacked autoencoder model is a stack of autoencoders, which is a famous deep learning 
model. It builds a block to construct a deep network [5]. 

3.1  Autoencoder 

The autoencoder is a neural network that attempts to reproduce its input, i.e., the target output 
is the input of the model. Fig. 2 gives an illustration of autoencoder, which has one input 
layer, one hidden layer, and one output layer.  
 

 

Figure 2:  Autoencoder model. 
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     Given a set of training to find the equation to get  samples, where x(i) ∈ Rd, an autoencoder 
first encodes an input x(i) to a hidden representation y(x(i)) based on (1), and then it decodes 
representation y(x(i)) back into a reconstruction z (x(i)) computed as in (2), as shown in 

y(x) = f (W1 x + b),    (1) 

z(x) = g (W2y (x) + c),   (2) 

where W1 is a weight matrix, b is an encoding bias vector, W2 is a decoding matrix, and c is 
a decoding bias vector; we consider logistic sigmoid function 1/(1 + exp(−x)) for f(x) and 
g(x) in this paper. By minimizing reconstruction error L(X, Z), we can obtain the model 
parameters, which are here denoted as θ, as  

𝜃 ൌ 𝑎𝑟𝑔ఏ min 𝐿ሺ𝑋, 𝑍ሻ ൌ 𝑎𝑟𝑔ఏ𝑚𝑖𝑛
ଵ

ଶ
∑ ฮ𝑥ሺ௜ሻ െ 𝑧ሺ𝑥ሺ௜ሻሻฮ

ଶே
௜ୀଵ .    (3) 

     One serious issue concerned with an autoencoder is that if the size of the hidden layer is 
the same as or larger than the input layer, this approach could potentially learn the identity 
function. However, current practice shows that if nonlinear autoencoders have more hidden 
units than the input, restrictions such as sparsity constraints are imposed, this is not a problem. 
When sparsity constraints are added to the objective function, an autoencoder becomes a 
sparse autoencoder, which considers the sparse representation of the hidden layer. To achieve 
the sparse representation, we will minimize the reconstruction error with a sparsity  
constraint as 

𝑆𝐴𝑂 ൌ 𝐿ሺ𝑋, 𝑍ሻ ൅ 𝛾 𝑑𝑓𝑠𝑑 ∑ 𝐾𝐿ሺ𝜌||𝜌ො௝ሻே
௝ୀ௜  ,      (4) 

where γ is the weight of the sparsity term, HD is the number of hidden units, ρ is a sparsity 
parameter and is typically a small value close to zero, 𝜌ො௝ ൌ ሺ1/𝑁ሻ ∑ 𝑦௝

ே
௜ୀଵ ሺ𝑥ሺ௜ሻሻ  is the 

average activation of hidden unit j over the training set, and 𝐾𝐿ሺ𝜌 ∥ 𝜌ො௝ሻis the Kullback–
Leibler (KL) divergence, which is defined as 

𝐾𝐿൫𝜌 ∥ 𝜌ො௝൯ ൌ 𝜌log
ఘ

ఘෝೕ
൅ ሺ1 െ 𝜌ሻlog

ଵିఘ

ଵିఘෝೕ
.   (5) 

     The KL divergence has the property that 𝐾𝐿൫𝜌𝜌ො௝൯ ൌ 0 if 𝜌 ൌ 𝜌ො௝. It provides the sparsity 
constraint on the coding. The backpropagation (BP) algorithm can be used to solve this 
optimization problem. 

3.2  Stacked autoencoders 

An SAE model is created by stacking autoencoders to form a deep network by taking the 
output of the autoencoder found in the layer below as the input of the current layer [5]. More 
clearly, considering SAEs with l layers, the first layer is trained as an autoencoder, with the 
training set as inputs. After obtaining the first hidden layer, the output of the kth hidden layer 
is used as the input of the (k + 1)th hidden layer. In this way, multiple autoencoders can be 
stacked hierarchically. This is illustrated in Fig. 3. 
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3.3  Training algorithm 

The learning algorithm we used for fine dust prediction is shown in Algorithm 1. 

4  EXPERIMENTS AND RESULTS 

4.1   Dataset 

In this paper, we use some dataset such as Table 1, the concentration of fine dust (PM10 and 
PM2.5), weather information (wind speed and direction, temperature, sky condition, rain, 
humidity, rain condition) and location information for 2017 in South Korea.  
 

 

Figure 3:  Stacked autoencoder. 

Algorithm 1. Training SAEs 

Given training samples X and the desired number of hidden layers l, 
Step 1) Pre-training the SAE 

i. Set the weight of sparsity γ, sparsity parameter ρ, initialize weight matrices and 
bias vectors randomly. 

ii. Greedy layer-wise training hidden layers. 
iii. Use the output of the kth hidden layer as the ሼ𝑊ଵ

௞ାଵ, 𝑏ଵ
௞ୀଵሽ௞ୀ଴

௟ିଵ  and input of the 
(k + 1)th hidden layer. For the first hidden layer, the input is the training set. 

iv. Find encoding parameters for the (k + 1)th hidden layer by minimizing the 
objective function. 

Step 2) Fine-tuning the whole network 
i. Initializeሼ𝑊ଵ

௟ାଵ, 𝑏ଵ
௟ାଵሽrandomly or by supervised training. 

ii. Use the BP method with the gradient-based optimization technique to change 
the whole network’s parameters in a top-down fashion. 
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Table 1:  Our data model. 

Attributes Unit Attributes Unit 

Area  City Date  yyyymmdd 

Site code  Number Time  hour 

Temperature  Celsius Rain  mm 

Wind speed  m/s Humidity  g/m3 

Wind 

direction 

(0–90) North 

Degree 
Rain 

condition 

(0) No rain 

 
(90–180) East (1) Rainy 

(180–270) South (2) Sleet 

(270–360) West (3) Snow 

PM10 

(0–30) Good 

µg/m3 PM2.5 

(0–15) Good 

µg/m3 
(31–50) Normal (16–25) Normal 

(51–100) Bad (26–50) Bad 

(100 ~) Dangerous (50 ~) Dangerous 

 
 
     We constructed the database using the fine dust and weather information data provided 
by the Air Korea website [4] and the Korea Meteorological Agency website [5]. We 
constructed a database of 695,041 data from January 1, 2017, to December 31, 2017. We 
defined data modeling as shown in Table 1 to analyze the characteristics of fine dust the 
correlation between fine dust and weather conditions.  
     In Table 1, we were selected twelve variables to be the input nodes. The input variables 
are area, data, time, site code, temperature, wind speed, wind direction, rain, rain condition, 
humidity, PM10 concentration and PM2.5 concentration. The output variable is the predicted 
value of fine dust (PM10 or PM2.5).  
 

4.2  Prediction accuracy 

To evaluate the performance of the proposed model, we adopted the performance index is 
the Root-Mean-Square error (RMSE). RMSE was calculated between the measured Air 
pollution value and predicted value by using the model. The index is defined as: 
 

𝑅𝑀𝑆𝐸 ൌ  ඥ∑ ሺ𝑃௠ െ 𝑃௥ሻଶ/𝑁 ,ே
௜ୀଵ                                                 (6) 

 
where Pm denotes the measured air pollution, Pr denotes the predicted air pollution and N is 
the number of measured data. 
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Table 2:  Prediction results for each area. 

Area 
RMSE 
PM10 

RMSE 
PM2.5 

Area 
RMSE 
PM10 

RMSE 
PM2.5 

Busan 14.64 7.79 Incheon 21.01 8.63 

Daegu 9.08 7.39 Sejong 7.77 2.72 

Daejeon 22.93 4.78 Seoul 5.71 7.97 

Gwangju 5.16 2.18 Ulsan 8.97 10.17 

4.3  Experiment results 

Table 2 indicates that our model showed the different prediction results for each area in South 
Korea. Gwangju city has the best performance with the lowest RMSE (Root Mean Square 
Error) PM10 value of 5.16 and the lowest RMSE PM2.5 value of 2.18. 
     Fig. 4 and Fig. 5 show the comparison of test and predict graph of PM10 and PM2.5. The 
value of fine dust is plotted along the Y axis, and the month is plotted along the X axis. In 
the experimental results, we confirmed that the predicted values of fine dust through learning 
and actual data show a similar pattern. It is necessary to modify the model considering the 
time when the predicted pattern appears slightly later than the actual data. 
     From the result obtained of experiment, it can observe and compare with the Air Quality 
Index (AQI) in Table 1. In Fig. 4, a highest PM10 concentration in Busan is 41.11 µg/m3 in 
February, a highest PM10 concentration in Daegu is 50.29 µg/m3 in February, a highest 
PM10 concentration in Daejeon is 71.17 µg/m3 in October, a highest PM10 concentration in 
Gwangju is 21.75 µg/m3 in January, a highest PM10 concentration in Incheon is 49.76 µg/
m3 in April, a highest PM10 concentration in Sejong is 78.32 µg/m3 in June, a highest PM10 
concentration in Seoul is 72.69 µg/m3 in March, and a highest PM10 concentration in Ulsan 
is 52.36 µg/m3 in June. In Fig. 5, a highest PM2.5 Concentration in Busan is 24.69 µg/m3 in 
January, a highest PM2.5 Concentration in Daegu is 38.43 µg/m3 in February, a highest 
PM2.5 Concentration in Daejeon is 51.56 µg/m3 in October, a highest PM2.5 Concentration in 
Gwangju is 16.36 µg/m3 in January, a highest PM2.5 Concentration in Incheon is 22.53 µg/
m3 in April, a highest PM2.5 Concentration in Sejong is 42.26 µg/m3 in May, a highest PM2.5 

Concentration in Seoul is 52.25 µg/m3 in June, and a highest PM2.5 Concentration in Ulsan 
is 36.53 µg/m3 in February. 

5  CONCLUSIONS 
Deep learning approaches are increasing in their popularity every day. Deep learning 
provides fast and effective solutions, especially in the analysis of big data. In this paper, we 
introduced a deep- learning-based method for fine dust prediction and used the deep learning 
algorithm to build a spatiotemporal prediction framework, which considers temporal and 
spatial relations of the dataset in modelling process. We showed the experiment results of 
prediction and accuracy of our deep learning model. 
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Figure 4:  Comparison of actual data and predicted data – PM10. 
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Figure 5:  Comparison of actual data and predicted data – PM2.5. 
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