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Abstract 

The decomposition of trichloroethylene (TCE) in air by non-thermal plasma was 
investigated with a multi-pin-to-plate direct current (DC) discharge at 
atmospheric pressure and room temperature. The effects of various operating 
parameters on the removal efficiency (RE) were examined. The experiments 
indicated that for low energy densities higher removal could be obtained with 
positive corona. For negative corona and 10% relative humidity (RH) a 
maximum RE of 99.5% could be achieved at 1100 J L-1. Formation of by-
products was qualitatively analyzed in detail with FT-IR spectroscopy and mass 
spectrometry. Detected by-products for negative corona operated at 300 J L-1 and 
10% RH include dichloroacetylchloride, trichloroacetaldehyde, phosgene, ozone, 
HCl, Cl2, CO and CO2. The highest RE for TCE was achieved with a relative 
humidity of 19%. 
Keywords: non-thermal plasma, volatile organic compounds, trichloroethylene, 
by-products. 

1 Introduction 

Many organic solvents used in metal, semiconductor and chemical industry have 
good physical and chemical properties and are therefore useful during the 
manufacturing process. Despite their good commercial value, most of them have 
a high volatility causing them to easily evaporate at ambient conditions. As a 
result the process waste gases are frequently contaminated with volatile organic 
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compounds (VOCs).  Trichloroethylene (TCE) is an example of such a VOC that 
is widely used for degreasing metal parts and semiconductors. It is also an 
ingredient in paint removers, adhesives and spot removers. Inhalation of TCE 
can however cause headaches, lung irritation and dizziness. In more severe cases 
nerve, kidney and liver damage have been reported. The International Agency 
for Research on Cancer (IARC) has determined that TCE is “probably 
carcinogenic”, proving its adverse effects to humans. Due to limitations of 
traditional methods (incineration, catalytic oxidation and adsorption) for the 
abatement of low concentrations of VOCs, non-thermal plasma (NTP) generated 
in atmospheric pressure discharges have been investigated as an energy and cost 
effective alternative [1–3]. In a NTP, the energy delivered to the system is almost 
entirely used to accelerate plasma electrons instead of heating up the gas flow 
like is the case for incineration (750–1150 °C) and catalytic oxidation (250–
500°C). While the gas stream remains at room temperature, the highly energetic 
electrons collide with background molecules (e.g. N2, O2, H2O) with formation 
of active plasma species (ions, radicals,...). These latter species are responsible 
for the oxidative abatement of VOCs. Kim has reviewed NTP techniques for the 
destruction of air pollutants [4].  
     In this work, a multi-pin-to-plate electrode configuration is used to generate a 
DC corona or glow discharge for the abatement of TCE. This electrode geometry 
was developed by the group of Akishev et al. [5–8] and was successfully tested 
for the removal of SO2 and NOx [9]. Vertriest et al. applied a large scale 
laboratory multi-pin-to-plate negative glow discharge for the removal of VOCs 
and discovered that molecules containing a double carbon bond have the lowest 
energy requirement for decomposition [2]. A recent review [10] summarizes DC-
excited NTPs for VOC abatement. In the present study, a DC corona/glow 
discharge operated at atmospheric pressure was used for the oxidation of small 
amounts of TCE in air. The effect of the discharge polarity, initial TCE 
concentration and water content on the removal efficiency have been 
investigated. By-products from TCE abatement were qualitatively analyzed with 
Fourier transform infrared (FT-IR) spectroscopy and mass spectrometry (MS).                  

2 Experimental  

The experimental set-up is illustrated in Figure 1. A compressor delivers ambient 
air to an air dryer (MSC-Air, Model Compact 10) which controls the relative 
humidity at approximately 12%. The humidity of the air can be changed by 
turning off the air dryer or by using dry air from a cylinder (Air Liquide, 
Alphagaz 1). A bubbler system is used to set the TCE concentration in the gas 
stream. The initial TCE concentration is controlled by changing the flow rate 
(Bronkhorst, EL-FLOW) of air through a 0.5 L bottle containing liquid TCE. 
The bottle is kept at a temperature of 30.0 ± 0.5 °C in a thermostatic water bath. 
Experiments are carried out with a total air flow of 2 L min-1 and with varying 
inlet concentrations of TCE (420 – 4000 ppm). The multi-pin-to-plate plasma 
source is based on the concept of a negative DC glow discharge [7, 9]. It consists 
of 5 aligned pins which were positioned 28 mm of each other. The inter-  
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Figure 1: Experimental set-up. 

electrode gap in this configuration and the total reactor length are 9 mm and 
200 mm respectively. The discharge is powered with a 30 kV/20 mA DC power 
supply and generated at atmospheric pressure and room temperature. For a total 
gas flow of 2 L min-1, the gas residence time in the plasma reactor is 2.16 
seconds. A high voltage probe (Fluke 80K-40, division ratio 1/1000) measures 
the voltage applied to the inner electrode. The discharge current is determined by 
recording the voltage signal across a 100 Ω resistor placed in series between the 
counter electrode and the ground. Each pin is ballasted with a 1.5 MΩ resistor. 
The fraction of the total electrical power dissipated in these resistors amounts to 
10% at most. 
     The mass spectrometer used in these experiments is a Quadrupole MS 
(Omnistar GSD 301 O2 Pfeiffer Vacuum) equipped with a Faraday cup and a 
SEM ChanneltronTM) detector. Balzers Quadstar 200 (QMS 200) software 
(Pfeiffer Vacuum) is applied for collecting and displaying data. Only the 
maximum peak intensities and the corresponding m/z numbers are collected. The 
peaks are represented as bar lines over the corresponding m/z. The qualitative 
identification of the by-products is achieved using Scan Bargraph mode and a 
SEM voltage of 1600 V in the mass range 0 – 200 m/z and an acquisition rate of 
1.5 scan min-1. A resolution of 50 with electron ionization of 60 V was adopted. 
The decomposition efficiency of TCE and the formation of by-products is also 
determined with a FT-IR spectrometer (Bruker, Vertex 70). The optical path 
length of the adjustable gas cell and the resolution of the spectrometer are set at 
0.80 m and 4 cm-1 respectively. For each spectrum, 40 samples are averaged 
from 600 to 4800 cm-1. The mercury-cadmium-telluride (MCT) detector is 
nitrogen cooled and OPUS (Bruker) software is used to collect and analyze the 
obtained spectra. Formation of ozone is analyzed by an ozone monitor (Envitec, 
Model 450). The temperature and the water content of the inlet gas stream are 
measured with a climate meter (Testo 445).  
     The RE (%) of TCE is calculated from: 
 

RE ൌቆ1‐
ሾTCEሿin
ሾTCEሿout

ቇ x 100                                           ሺ1ሻ 
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where ሾTCEሿin is the concentration of TCE introduced in the reactor and ሾTCEሿout 
is the TCE concentration in the effluent gas. The energy density (J L-1) is 
calculated as: 
 

ε ൌ
P
Q
                                                                ሺ2ሻ 

 
where P is the discharge power (W) and Q the gas flow rate (L s-1) through the 
plasma reactor. The selectivity to CO2 is defined as: 
 

SCO2ൌ
ሾCO2ሿ

2 x ሾTCEሿin x RE
 x 100                                         ሺ3ሻ 

 
where ሾCO2ሿ is the concentration of carbon dioxide detected in the effluent gas as 
a result of total TCE oxidation. 

3 Results and discussion 

3.1 Effect of discharge polarity on TCE removal efficiency 

Figure 2 presents the experimental results of the effect of the discharge polarity 
on the RE. The polarity of the DC corona discharge depends on whether the 
electrode pins are connected to the DC high voltage source (positive corona) or 
to the ground (negative corona). The mechanism for corona generation differs for 
both discharges [11]. The discharge of a positive corona consists of thin current 
filaments, also referred to as streamers. At a certain threshold voltage the 
streamer-like discharge transitions to an unstable spark discharge regime. For the 
negative corona, increasing the applied voltage results in the formation of a 
 

 

Figure 2: TCE removal efficiency versus energy density (temperature: 20°C, 
relative humidity: 10%, TCE inlet concentration: 1600 ppm). 
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steady state diffusive glow discharge and in a subsequent sparking [12]. By 
increasing the energy density, the RE for both negative and positive corona are 
increased (Figure 2). However, with positive corona and for energy densities up 
to 330 J L-1 higher efficiencies are obtained compared to negative corona. 
Overall, positive corona removes about 17% more TCE. At higher energy 
densities (> 330 J L-1) sparking occurs for the positive corona and a maximum 
RE of 80% is reached. The higher removal obtained with positive corona can be 
attributed to the fact that streamer discharges have a higher efficiency in the 
generation of chemical active species that are responsible for the oxidation of 
TCE [13]. At high energy densities (> 500 J L-1) the negative corona shifts to the 
glow regime which gradually fills the entire gap with active plasma volume. In 
this mode, almost complete removal of TCE is established at 1100 J L-1. For both 
discharges (negative and positive corona) the selectivity to CO2 does not exceed 
10%. However, higher CO2-selectivities are obtained with negative corona. 

3.2 Identification of by-products 

For negative corona, by-products are qualitatively analyzed and identified with 
FT-IR and MS. Table 1 shows the by-products and their IR absorption bands that 
are detected with FT-IR spectroscopy at an energy density of 300 J L-1. Due to 
incomplete oxidation, TCE is partially converted to dichloroacetylchloride and 
phosgene. Hydrogen chloride, carbon monoxide and carbon dioxide are detected 
as complete oxidation products. Ozone, a typical by-product of NTP treatment, is 
mainly formed by a three body collision by the following reactions: 
 

O2 e 2 O

MO3

+ +

O + O2 +

e (4)

(5)

- -

 

Table 1:  Assignments of the observed infrared frequencies of TCE oxidation 
(negative corona, energy density: 300 J L-1, relative humidity: 
10%). 

Compound Infrared frequency (cm-1) 
TCE (Cl2C=CHCl) 3169 (C-H); 3099(C-H); 1592, 1560 

(C=C); 1253 (CH-Cl); 945, 784, 634 
(C-Cl); 850 (C-H) 

Dichloroacetylchloride 
(Cl2CH-COCl) 

1822, 1788 (C=16O); 1232 (C-H); 
1079, 991 (C-C); 800, 742 (C-Cl2); 

1783 (C=18O) 
Phosgene (COCl2) 1832 (C=16O); 1791(C=18O);

1682 [2(C-Cl2)]; 852, 662 (C-Cl2) 
Ozone (O3) 1047, 1029 (O=O=O)

Hydrogen chloride (HCl) 3049 – 2732 (H-Cl)
Carbon monoxide (CO) 2178 (C≡16O); 2114 (C≡18O)
Carbon dioxide (CO2) 2359 (16O=C=16O); 2343 (18O=C=18O) 
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     MS results additionally confirm the formation of trichloroacetaldehyde and 
chlorine. After continuous operation of the plasma system, the spherical 
segments of the anode surface were covered with a brown carbonaceous deposit. 
The deposit is however not analyzed in the present work. With positive corona 
and under identical experimental conditions similar by-products were identified. 
The by-product analysis indicates that TCE is only partially mineralized. This 
demonstrates one of the shortcomings of NTP which can be improved by catalyst 
hybridization [14-16].                

3.3 Effect of initial TCE concentration 

Figure 3 shows the effect of the initial TCE concentration on the RE for both 
negative and positive corona. Experimental results indicate that for negative 
corona the RE of TCE is little influenced by the initial concentration. For 
positive corona, the RE decreases as the initial concentration of TCE increases. 
The latter observation is consistent with other studies where the effect of the 
initial concentration is studied [17-19]. It is believed that higher initial TCE 
concentration results in less energy available for the decomposition of each TCE 
molecule which causes a decrease in RE [19].     
 

 

Figure 3: TCE removal efficiency versus energy density for different initial 
TCE concentrations ((a) negative corona, (b) positive corona, 
temperature: 20°C, relative humidity: 10%). 

3.4 Effect of humidity 

The effect of humidity is of great interest for practical applications in industry 
since process gas consists of ambient air that usually contains water vapour. The 
influence of relative humidity (RH) on TCE removal is shown in Figure 4. For 
dry air and 12% RH the removal of TCE is comparable. However, at 19% RH 
the RE is improved with 15 to 20% over the range of energy densities tested. The 
water content of the waste gas has opposite effects on the chemical and physical 
nature of the plasma. Collisions between H2O and plasma species such as 
electrons, oxygen radicals and O(1D) are responsible for the production of OH 
radicals which act as highly reactive oxidizing agents for VOCs. However, when 
the relative humidity increases, the electron mean energy is lowered by the  
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Figure 4: TCE removal efficiency versus energy density for different relative 
humidities (negative corona, temperature: 20°C, TCE inlet 
concentration: 500 ppm). 

electronegative character of water. The subsequent quenching effect of activated 
chemical species has an adverse effect on the RE [20]. The latter effect was not 
observed during the present study due to the limited water content of the gas 
stream. Guo et al. determined the concentration of OH radicals during the 
decomposition of toluene in air with a dielectric barrier discharge operated at 
atmospheric pressure and with varying RH. The highest toluene RE was 
achieved at a RH of 20% which corresponded with the maximum OH yield [21]. 
Although higher RH were not examined in this study, the RE reached a 
maximum value at RH of almost 20%.           

4 Conclusions 

In the present study a DC multi-pin-to-plate plasma source was utilized to 
decompose dilute concentrations of TCE in air. This VOC is often used in 
industry to degrease metal and semiconductors. The polarity of the plasma 
discharge affected the removal efficiency. At low energy densities, higher RE 
were achieved with positive corona. Degradation products with negative corona 
include dichloroacetylchloride, trichloroacetaldehyde, phosgene, HCl, Cl2, CO 
and CO2. A maximum RE of 99% was achieved with negative corona at 1100 
J.L-1 and a relative humidity of 19%.   
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