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Abstract 

Understanding the temporal variability in the concentration of airborne PM10 can 
be of benefit as it would lead to more reliable models that can inform the 
monitoring and control of air pollution. Established forecasting approaches are 
generally data driven and offer little in terms of furthering the understanding of 
the dynamics of data. A variability decomposition (VD) based transfer function 
model can be used to decompose variability in time series data into inherent and 
external, thus concentrating on modelling only the external variability as a 
function of the model inputs.  
     The VD approach was used to model the multi-year maximum daily PM10 
concentration recorded in St Leonards, Edinburgh using historic values and PM10 
concentrations recorded at the Grangemouth monitoring station situated 19 miles 
to the North West using two established approaches as benchmarks. The results 
indicate that the transfer function models using the Grangemouth data were 
superior to the univariate model in terms of the RMSE and MAPE. The 
performance of the VD transfer function model was comparable to the 
benchmark in terms of forecast accuracy, but superior in providing improved 
physical interpretation of the model components  
Keywords: air quality forecasting, variability decomposition, transfer function 
modelling, PM10, ARIMA, Box-Jenkins, transfer function models. 
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1 Introduction 

Poor air quality levels in our towns and cities are at their highest on busy streets, 
near to factories, and in inner-city areas. Poor air quality impacts on the young, 
the sick and elderly people’s health and the environment [1]. However air quality 
data usually contains extreme values that cannot be explained by these factors. 
Nevertheless, the pollutant threshold/limit values for air quality are set out in the 
European Directives [2]. The United Kingdom has National Air Quality 
Standards which defines levels that avoid significant risks to health [3]. 
     PM10 is a standard measure of particulate air pollution. It has been linked to 
respiratory illnesses, including asthma, and real time monitoring facilities of 
PM10 levels are now available to the general public through the Eye on Earth 
website, which is maintained by the European Environment Agency.  
     A number of existing works attempt to produce temporal models for PM10 
concentrations and other pollutants using a variety of approaches (see for 
example [4–6]. Many of these are forecasting focused and tend to favour non-
parametric approaches such as Neural Networks over statistical methods, 
however some of these suffer from the improper use of statistical methods in the 
time domain rendering any comparisons between the approaches of little value 
(as, for example, in the use of linear regression in [7]).   Temporal forecasts for 
PM10 are made available through the UK Air Quality Archive website (8) that is 
maintained by UK Department for Environment, Food & Rural Affairs (Defra). 
However the forecasts produced are spatio-temporal and are at macro level and 
the forecasting methodology is essentially judgmental and non transparent: 
     “Ultimately it is the expert judgement of the duty forecaster which determines 
how the available data are combined to form the forecast issued to the public.” 
[9] 
     A notable development is the Openair project [10] which aims to develop an 
open source set of tool to measure, analyse and model air quality data. This 
NERC and Defra funded project encourages transparency and collaboration 
between members of the air quality community and is showing a great deal of 
promise in this area.  
     This research primarily aims to model the maximum levels of PM10 recorded 
daily at St Leonards monitoring station in Edinburgh using established time 
series methods and compares these with the model produced by a novel 
modelling approach known as the Variability Decomposition (VD) approach. 
The VD approach decomposes variability in time series data into inherent and 
external, and in a transfer function setup it aims to provide further understanding 
of the dynamics of the data through concentrating on modelling only the external 
variability. This approach is introduced in detail next. 

2 The variability decomposition approach (VD) 

The VD approach decomposes variability in a stable input-output (I/O) time 
series system according to its source or main influence. In this approach, it is 
proposed that variability in time series data can be due to three main sources, 
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external, inherent and noise. This decomposition is used within the VD 
framework to construct transfer function models to represent and describe the 
dynamics of the underlying relationships between the time series datasets. These 
models can then be used in descriptive, control and forecasting applications as 
they provide added insights into the univariate dynamics and cross variable 
relationships governing the I/O system.  

2.1 Validation of the VD  

Consider the following autoregressive moving average (ARMA) model [11]:  

 tt eByB )()(    (1) 

where ty  is the observed datum at time t, te  is independently and identically 

distributed noise (i.e. white noise), B is the backshift operator such that 

1 tt yBy . )(B  and )(B  are polynomials in B with orders p and q, that 

represent the autoregressive and moving average components of the model, 
respectively. Note that this model assumes yt being stationary. 
     The model in Equation (1) represents the standard time series model that the 
Box-Jenkins [11] and other approaches are based on. It has been shown that 
ARMA models are capable of modelling any stationary time series [12]. 
     Adding yt  to both sides of Equation (1) above, and rearranging yields 

 tttt eByByy )()(    (2) 

hence, 

 ttt eByBy )()( 1
*     (3) 

where  

 tt yByB )()(*   . (4) 

Let 

 1
*

1 )(   tt yBH   and tt eBE )( , (5) 

 
where Ht now contains only historic values of the observed series. Therefore, we 
have 

 ttt EHy  1 . (6) 

     It can be shown, without loss of generality, that 1tH  is free of ty  and is a 

function of historic values of the series (i.e. ,21,  tt yy ).  

     Given the independence of the noise component, it can be shown that 

 
)()()( 1 ttt EvHvyv   , (7) 

where )( 1tHv  is the inherent variability, representing the observed historic 

values’ contribution to the variability at present, and )( tEv  is the external 

variability representing the variability in the present that cannot be explained 
using the observed historic values. Hence, Equation (7) decomposes the 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and the Environment, Vol 136, © 2010 WIT Press

Air Pollution XVIII  351



variability of the observed series, )( tyv into inherent, modelled via the 

Autoregressive component of the model; external, modelled as the 
Movingaverage component of the model and noise (which is built into Et). 
     The VD was validated using simulated data in [13, 14] where it has been 
shown that the influence of an exogenous variable mainly influences the 
Movingaverage component of the transfer function model.  

3 Data and modelling 

Experiments were carried out to model the maximum daily PM10 readings 
measured at St. Leonards monitoring station in Edinburgh between 19/1/2004 
and 15/9/2009 as a univariate ARIMA model and in a transfer function models 
using VD and the established Box-Jenkins transfer function approach using the 
maximum daily PM10 recorded at the Grangemouth monitoring station as input. 
Figure 1 shows a time plot of the raw data where it can be seen that there are a 
number of days in which the maximum PM10 recorded seems to deviate 
markedly from the general norm of the data. A number of missing values 
covering approximately 10 weeks in 2007 were also present in the data. These 
were replaced using the means of the nearest neighbouring points.  
     The univariate ARIMA model was considered as the naive benchmark for this 
data and the results from the three models were compared using the conventional 
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) 
penalty functions.  
 

 
Figure 1: Daily maximum PM10 recorded in St Leonards monitoring station 

in Edinburgh. 
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4 Results 

The univariate model obtained for the data was an ARIMA(1,1,1)(0,1,1): 

(1  0.27B)(1  B 7 )(1  B)yt  (1 0.96B)(1  0.98B 7 )et  

     The Box-Jenkins transfer function model was: 

(1 B7)(1 B)yt 
0.279

1 0.28B
(1 B7)(1 B)xt 

(1 0.966B)(1 0.98B7)

1 0.206B
et

 

while the VD model obtained for the data was: 
 

(1B)(1B7)yt 
(0.2750.27B0.006B6 0.278B7 0.279B8)

10.27B
xt 

(10.97B)(10.98B8)

10.64B
et

 

 

     The forecast accuracy measures yielded by these models are shown in  
Table 1.  

Table 1:  Forecast accuracy measures yielded by the three modelling 
approaches. Both transfer function approaches seem to be superior 
to the univariate model. 

model penalty function RMSE MAPE 
Univariate 14.749 39.584 

Box-Jenkins Transfer Function 13.982 36.738 
Variability Decomposition TF 13.87 37.4 

     The residuals from the three models were homoscedastic, had no visually 
obvious patterns when plotted against time and showed further white-noise 
behaviour with no significant autocorrelations or partial autocorrelations.  
     While all the polynomials in the models above are stationary, the 
Movingaverage components of the models contain parameters that are close in 
value to the boundary of invertibility. This might be seen as a data preparation 
problem or as the data having a long memory whereby the PM10 particles seem 
to remain in the atmosphere for a long time - hence the model requiring a 
relatively large number of past observations to explain the variability in the data.  

5 Discussion 

Figure 2 shows the observed and within sample one step-ahead forecast obtained 
from the ARIMA, Box-Jenkins transfer function and the VD models, 
respectively.   
     It can be seen from Figure 2 that, visually, both transfer function models 
provide a better fit for the data compared to the univariate ARIMA. This 
improved fit is evident in the transfer function models predicting the exotic  
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Figure 2: Within sample forecasts and observed data obtained from the three 
modelling approaches. Visually the transfer function approaches 
seem to provide a superior fit compared to the univariate model. 

observations with relatively more accuracy compared to ARIMA. This finding is 
also supported by the RMSE and MAPE values which are smaller for the transfer 
function models compared to the univariate ARIMA. Physically, this can be 
interpreted to indicate that some of the PM10 measured at St Leonard can be 
linked to the PM10 measured at Grangemouth. 
     The structure of the VD model is more complex compared to the Box-Jenkins 
transfer function model. While model parsimony is generally desired, the 
components of the VD model are more pertinent in relating to the problem at 
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hand. The numerator polynomial of the transfer function term in the model 
indicates that the variability in maximum PM10 data at St Leonards is related to 
(and can be partially explained by) the maximum PM10 measured on the same 
day and on one, six, seven and eight days before. 
     This finding is facilitated through the flexible structure of the VD model 
which provides a regression-like numerator polynomial in the numerator of the 
transfer function term. By contrast, while the established Box-Jenkins transfer 
function model yielded comparable forecast accuracy measures, it cannot 
provide similar insights into the underlying dynamics of the data due to 
structural limitations. It is worth noting that as the distance between the two sites 
is approximately 19 miles (31 km, as the crow flies) some of the relationships 
inferred through the VD model may not necessarily be causal since ambient 
conditions may be similar at both sites due to geographical proximity. 
     All models considered in this study failed to produce accurate predictions of 
the peaks in maximum PM10 in St Leonard. Future models can look at using 
other regional PM10 data as inputs to the VD model to enhance predictability and 
forecast accuracy.  
     As noted earlier, a few of the models’ parameter estimates lie close to the 
boundaries of invertibility. One possible explanation for this is that these long 
memory model components represent the slow dispersion nature of airborne 
PM10. Nevertheless, future work can look into refining these models.  
     In conclusion, the VD approach produced a superior transfer function model 
for the maximum daily PM10 measured at St Leonard monitoring station. The 
VD model indicated that some of the variability in St Leonard’s maximum PM10 
can be explained using the max PM10 measured at Grangemouth however other 
datasets may be considered in order to better model the extreme observation in 
the PM10 series.  
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