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Abstract 

Many researches have highlighted the influence of climate on mortality, showing 
a high increase in mortality in the summer time during “heat waves”, periods of 
very high temperature and humidity levels. 
     The bioclimatic indexes are used in urban climate studies to describe the level 
of thermal sensation that a person experiences due to the modified climatic 
conditions of an urban area. 
     The index provides a meaningful and realistic indicator that can not only be 
used as an information as to how hot it feels, but also as a readily identifiable 
warning for individuals subject to the physiological dangers of heat exposure.  
     The authors have developed a methodology that, by means of the Neural 
Network (NN), permits one to predict the values of meteorological data and then 
the calculation of the bioclimatic indexes. 
     The meteorological data required for the calculation of the bioclimatic index 
concerning hourly values of air temperature, relative humidity, wind speed have 
been used according to the records of the meteorological station of the Pergusa 
Lake (EN), for the year from 2003 to 2006 
     NN-estimated, the bioclimatic indexes values were compared with coincident 
bioclimatic indexes values obtained from air temperature and relative humidity 
observations recorded at standard meteorological stations.  
     Statistical analysis showed a good agreement between the NN-estimated and 
the station-observed bioclimatic indexes values, with a root mean square error 
(RMSE) < 1%. 
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     The proposed methodology demonstrates the potential of using the NN for 
defining the bioclimatic indexes and its feasibility as an indicator to pre-alert 
authority to heat related risks and dangers of heat waves 
Keywords: heat-waves, bioclimatic index, Neural Network. 

1 Introduction 

The most direct effect of weather on human mortality in mid-latitudes are 
observed during and after summer heat waves that lead to a significant increase 
and intra-seasonal shifts in total mortality [1]. 
     Recent blistering summer heat-waves have caused serious health and social 
problems in the WHO European Region as, during the summer of 2003, heat 
waves can be not only extremely uncomfortable, but even deadly.  
     During the summer season, or in very hot periods anyway, the human 
organism makes use of perspiration to maintain its temperature within proper 
physiological limits. The sweat, which is mostly made of water, evaporates 
(endothermal phenomenum) taking away heat so as to have a cooling effect on 
the skin. A high humidity level in the surrounding environment may obstruct this 
process limiting the evaporation. The human body therefore cannot eliminate the 
excessive heat (compared to its own physiological limits), receiving a sensation 
of a higher temperature. Overheating can be very dangerous; heat exhaustion 
occurs when the body loses fluid and salt through perspiration faster than can be 
replaced, causing dizziness. The elderly and ill are not the only people that heat 
kills. It also kills healthy young people, usually because they do not recognize 
the dangers of exercising in hot weather, especially hot, humid weather.  
     Exercising in hot weather can cause muscle cramps, especially in the legs, 
because of brief imbalances in body salts. People not used to exercising in heat 
may experience a quick drop in blood pressure that can lead to fainting and, in 
some cases, extreme heat can cause the body temperature to rise to 40,5 degrees 
or higher, causing a heat stroke, with confusion and unconsciousness. 
     When heat and humidity combine with the slow evaporation of sweat from 
the body, outdoor exercise becomes dangerous even for those in good shape.  
     Many researches have highlighted the influence of climate on mortality, 
showing a high increase in mortality in the summer time during “heat-waves”, 
periods with very high temperature and humidity levels.  
     This relation seems to be stronger than those between mortality and other 
environmental factors, such as atmospheric pollution [6]. 
     Dangers of heat include 

 Heat cramps: exercising in hot weather can lead to muscle cramps, 
especially in the legs, because of brief imbalances in body salts. Cramps 
become less frequent as a person becomes used to the heat.  

 Heat syncope or fainting: anyone not used to exercising in the heat can 
experience a quick drop in blood pressure that can lead to fainting. As 
with heat cramps, the cure is to take it easy.  

 Heat exhaustion: Losing fluid and salt through perspiration or replacing 
them in an imbalanced way can lead to dizziness and weakness. Body 
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temperature might rise, but not above 39,0 degrees. In some cases 
victims, especially the elderly, should be hospitalized. Heat exhaustion 
is more likely after a few days of a heat wave than when one is just 
beginning.  

 Heatstroke: In some cases extreme heat can upset the body’s thermostat, 
causing body temperature to rise to 40,5 degrees or higher. Symptoms 
are lethargy, confusion and unconsciousness. Even a suspicion that 
someone might be suffering from heatstroke requires immediate 
medical aid. Heatstroke can kill.  

     The risk of premature death due to temperature increases associated with 
global warming is six times higher for Europeans who are already suffering from 
respiratory problems, according to the European Respiratory Society (ERS): for 
instance, a one degree Celsius increase in temperature produces a 1-3% increase 
in deaths in the general population, but this same temperature increase results in 
a 6% increase in deaths among people with respiratory problems. 

2 Artificial Neural Networks  

One attempt to emulate the imprecise and incomplete way of treating 
information that is typical of the human brain is represented by Neural Networks 
(NNs), which were born as structure models of the brain but are currently used as 
calculation paradigms for approximating non-linear functions and classification. 
     One of the characteristics of NNs is that of emulating the human brain, even 
though simplistically, by exploiting its main features, i.e., the ability to learn 
from experience. 
     Thus, NNs emulate the structure and functioning of biological neurons, even 
if in fact no neural network is able to reach, except to a minimal extent, the 
elaborating capacity of the human brain, and therefore the analogy is a purely 
formal one. 
     Artificial NNs can thus be defined as a connected computational system able 
to store and utilize knowledge acquired through experimenting. The knowledge 
acquired is stored with the help of values of certain parameters, called weights, 
which connect the computational units, known as nodes or neurons, whose 
values are fixed during the training phase.  
     Every neuron is an entity which has access to several inputs and one output 
only. It receives the inputs from neighboring neurons, elaborates them and 
transmits the output to other neurons, appropriately weighting them by means of 
the connective values. The neuron model currently most used is reported in 1, 
where xi represents the ith input (the ith component of the vector X), wi is the 
relative weight at the ith input (the ith component of the vector W), and f(WtX) is a 
function, generally a non-linear one, known as the activation function . The value 
of the activation function, calculated at the weighted addition of the inputs, thus 
represents the neuron output.  
     The number of input and output neurons is known being related to the 
application while the hidden structure is chosen from one time to another and 
determines the performance of the net.  
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Figure 1: Neuron model. 

     There are three different operational phases of the networks. The first is 
called the learning or training phase. During this phase a set of example are 
provided to the network. These data, using different learning algorithm, chosen 
according to the network structure and type, are used to update the weight 
values. 
     The second phase is called the test phase or checking phase and, by using a 
different data set, serves to verify that at the end of the learning the network is 
functioning correctly. In this phase, the weights of the net are “frozen” at the 
previously determined, learning phase, values. Once these two phases are 
completed, the net can be used for calculating the output in the face of unknown 
input.  
     The neural structure applied in the paper is the Multilayer Perceptron (MLP). 
As shown in Figure 2, the MLP is made up of a layer of input neurons that have 
the goal of transferring the signal to the next layer, giving it the appropriate 
weights from a certain number of internal layers, also known as hidden layers, 
and from a layer of output neurons. The neurons of each layer are all connected 
by the weights with those of the previous and successive layers. The MLP 
structure is thus characterized by the number of hidden layers and the number of 
neurons in each layer [3]. 
 

 

Figure 2: Multilayer perceptron diagram with two hidden layers. 

     With regard to Figure 2, the following notations are used: 
 N1: number of layers; 
 s=1,...,N1: index of layers; 
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 N(s): number of neurons in the layer s (in particular N(1) indicates the input 
while N(N1) indicates the number of output); 

 Oi
(s): ith input of the layer s (for s=1 it represents the ith input of the 

network); 
 Wij

(s): weight of the interconnection between the ith neuron of the layer s 
and the jth neuron of the layer s-1; 

 i
(s): the bias factor of the ith unit of the layer s, which corresponds to the 

weight of an interconnection with a neuron activated at the unitary value; 
1. i(): the activation function (generally, a continuous and monotone 

increasing derivable function, bounded both above and below). 
     The formulas which allow us to calculate the network outputs, once the inputs 
Oi

(1) are known, are the following: 
 

1. calculation of the activation for each neuron  

 xi
(s) = 





1

1
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j

Wij
(s-1) Oj
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2. calculation of the neuron output with a logistic sigmoidal activation 

function 

                  (2) 

     The calculations that allow us, given the input values to the network, to 
calculate the outputs Oi

(Nl) for i = 1,...,N(Nl) are generally called forward 
propagation phase. 
     The Stone-Weierstrass theorem which offers a rigorous demonstration of the 
universal interpolation property of an MLP with at least one layer of hidden 
neurons, provides the theoretical background for the NN application. In fact, it 
has been proved that an MLP-type artificial NN with at least three layers and a 
sigmoidal activation function for the neurons of the hidden layer is able, to any 
degree of accuracy that may be required, to interpolate a continuous non-linear 
function, or one with a finite number of discontinuities.  
     With regard to the learning of an MLP, it takes place by means of an iterative 
algorithm that updates the values of the network interconnections such that a 
total square error functional is optimized on a set of input/output data defined 
[1]. At this point, the gradient algorithm for back-propagation of the output layer 
error is applied until the first hidden layer, simultaneously updating the value of 
the weights, according to the deepest-descent gradient formula [4]. 

3 The bioclimatic index 

The body attempts to maintain a constant internal temperature of 37°C at all 
times. In hot weather, the body produces sweat, which cools the body as it 
evaporates. As the humidity or the moisture content in the air increases, sweat 
does not evaporate as readily.  
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     Sweat evaporation stops entirely when the relative humidity reaches about 90 
percent. Under these circumstances, the body temperature rises and may cause 
illness.  
     The bioclimatic index is used to quantifying human discomfort due to 
excessive heat and humidity. 
     The bioclimatic indexes most commonly used in urban climate studies are the 
Humidex, the Discomfort Index (DI) of Thom, the Summer Simmer Index (SSI), 
the Apparent Temperature, etc. 
     The Humidex combines the temperature and humidity into one number to 
reflect the perceived temperature.  As it takes into account the two most 
important factors that affect summer comfort, it can be a good measure of how 
stifling the air feels than either temperature or humidity alone. 
     The Humidex formula is based on the work of Masterton and Richardson [3]. 
 

 Humidex = T + 5/9 * (e-10) (3) 
 

e =  (6.112*10^(7.5*T/(237.7+T))*H/100)  vapour pressure. 
T= air temperature (degrees Celsius). 
H= humidity (%). 
 
     Table 1 shows the correlation between the values of the Humidex and the 
correlated human discomfort. 

Table 1:  Humidex and the correlated human discomfort. 

 

 

 

 

 

     The new SSI gives an indication of the dangers of exposure to various 
combinations of temperature and humidity, based on physiological studies. 
 

 SSI = 1.98  ( T - ( 0.55 - 0.0055  ( H ) )  ( T –58 ) ) - 56.83 (4) 
 
T = Air Temperature (°F); 
H  = Relative Humidity  (%). 
 

     The results can be illustrated in tabular form as a function of temperature and 
humidity, or as a function of temperature and dew point.  
     Figure 3 show the values of SSI as a function of temperature and humidity. 

 Humidex Range Degree of Comfort 

20-29 comfortable 

30-39 some discomfort 

40-45 great discomfort; avoid exertion 

above 45 dangerous 

above 54 heat stroke imminent 
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Temp 
(° F) 

Relative Humidity (%) 
5 10 20 30 40 50 60 70 80 90 100 

70   66 69 70 71 72 73 73 74 74 75 
75   73 75 76 76 77 78 79 80 81 82 
80   78 80 82 83 84 86 88 91 93 97 
85   83 86 87 88 92 96 100 104 109 117 
90   88 92 94 97 100 106 115 123 135 * 
95   94 99 103 107 112 123 135 149   

100   100 104 112 117 128 137 *    
105 102 106 112 119 131 142 *     
110 108 112 119 131 144 *      
115 113 117 128 142 *       
120 118 124 138 *        

Figure 3: The new Summer Simmer Index [6]. 

     Seven zones are identified in figure 3.   
     For SSI values between 70 and 77(zone 1), most people are comfortable, but 
slightly cool.   
     For SSI values between 77 and 83 (zone 2), nearly everyone feels quite 
comfortable. 
     For SSI values between 83 and 91 (zone 3) most people are comfortable, but 
slightly warm.   
     For SSI values between 91 and 100 (zone 4), increasing discomfort is 
experienced (warm). 
     For SSI values between 100 and 112 (zone 5), a caution of sunstroke and heat 
exhaustion exists for prolonged exposure and activity, along with significant 
discomfort (extremely warm).   
     For SSI values between 112 and 125 (zone 6), virtually everyone is 
uncomfortable, a danger of heatstroke and great discomfort exists (hot). 
     For SSI values between 125 and 150 (zone 7) there is an extreme danger of 
heatstroke, especially for the weakened or elderly, and even young children, 
whosebody metabolism demands cooler effective temperatures than most adults. 
Maximum discomfort exists at these conditions (extremely hot).   
     Beyond 150, circulatory collapse is imminent for prolonged exposure. 
     Obviously the formulas used to calculate the discomfort indexes produce 
theoretic average data which may be highly influenced by a lot of human and 
environmental factors such as: height, weight and sex of the individual, clothes 
used, presence of shade or wind, carried out activity. 

4 Methodology  

The general form of a time-discrete NARMAX (Non-Linear Auto-Regressive 
Moving Average with Exogeneous Input) model is the following: 
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being u(k) and y(k) respectively the input and output of the system. In the study 
case y(k) and u(k) represent samples of the considered variables that are: air 
temperature, in the following indicated as (T), solar radiation (RS), relative 
humidity (UR), wind speed (VV) and wind direction (DV). 
     Daily data, from years 2003 to 2006, recorded by meteorological station of 
the Pergusa Lake (Enna, Italia) have been used to train and test neural networks. 
Training phase has been performed using years from 2003 to 2005, while 2006 
has been used for the test phase. As previously introduced, the unknown function 
F is identified by means of artificial neural networks, as described in the 
following models. In particular, an MLP [1] with 20 hidden neurons has been 
adopted. 
     Several models with a different number of regression for each variable have 
been tested. An extensive trial-and-error phase has led to the models 
characterized by the following structures: 
 
T(k)=F[T(k-2), RS(k-2), UR(k-2), DV(k-2), VV(k-2), T(k-1), RS(k-1), UR(k-1), 
DV(k-1), VV(k-1)]; 
UR(k)=F[UR(k-2), T(k-2),  RS(k-2), DV(k-2), VV(k-2), UR(k-1), T(k-1),  RS(k-
1), DV(k-1), VV(k-1)]; 
VV(k)=F[VV(k-2), T(k-2), RS(k-2), UR(k-2), DV(k-2), VV(k-1), T(k-1), RS(k-
1), UR(k-1), DV(k-1)]. 
 

5 Results 

Figure 4 shows the comparison between the NN-estimated Humidex values and 
the coincident bioclimatic indexes values obtained from air temperature and 
relative humidity observations recorded at standard meteorological stations 
during the summer of 2006.  
     Statistical analysis showed a good agreement between the NN-estimated and 
the station-observed bioclimatic indexes values, with a root mean square error 
(RMSE) < 1%. 
     It is possible to notice that for more or less the 20% of cases (20 days) have 
been verified to be extremely dangerous conditions for elderly and persons with 
pre-existing cardiovascular and respiratory diseases. 
     Figure 5 shows the comparison between the NN-estimated SSI values and the 
coincident bioclimatic indexes values obtained from air temperature and relative 
humidity observations recorded at standard meteorological stations during the 
summer of 2006.  
     Figure 6 shows the percentage distribution of the Humidex (a) and the SSI (b) 
in function of the perceived human discomfort. 
     It has to be noted that for more or less in the 25% of cases ( 23 days) have 
been verified extremely dangerous conditions for elderly and persons with pre-
existing cardiovascular and respiratory diseases. 
 

)](),.....,1(),(),.......,1([)( uy nkukunkykyFky 
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Figure 4: Predicted and “measured” value of Humidex index. 

 

 

 

Figure 5: Predicted and “measured” value of SSI (June 2006). 
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Figure 6: Statistical distribution of Humidex (a) and SSI (b) index during the 
summer 2006. 

     The analysis of results shows that no substantial differences have been found 
for the two different bioclimatic indexes considered.  

6 Conclusions 

In this study the authors have proposed a methodology that permits one to 
predict the daily value of bioclimatic indexes (Humidex and the SSI) utilising the 
data recorded by the meteorological station in the Urban Area of Enna (ITALY). 
     The bioclimatic index provides a meaningful and realistic equivalent 
temperature that can not only be used as a marker as to how hot it feels, but also 
as a readily identifiable warning for individuals subject to the physiological 
dangers of heat exposure. 
     The obtained results demonstrate a good correlation between predicted values 
of bioclimatic indexes, calculated by means of the NN, and real values of 
bioclimatic indexes 
     The elderly and persons with pre-existing cardiovascular and respiratory 
diseases are most at risk of death from ambient heat exposure; these risks can be 
prevented if we can provide warning systems and information for respiratory 
patients. 
     The proposed methodology to predict the value of the bioclimatic indexes 
could be used as a public awareness for elderly and persons with pre-existing 
cardiovascular and respiratory diseases that are most at risk of death from 
ambient heat exposure. 
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