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Abstract 

This work focuses on the prediction of hourly levels up to 8 hours ahead for five 
pollutants (SO2, CO, NO2, NO and O3) and six locations in the area of Bilbao 
(Spain). To that end, 216 models based on neural networks (NN) have been built. 
Spatial variability for the five pollutants has been assessed using Principal 
Components Analysis and different behaviour has been detected for the 
nonreactive pollutant (SO2) and the rest (CO, NO2, NO and O3). This can be 
explained by the very local effects involved in the photochemical reactions. The 
inputs used to feed the NN models intended to predict forthcoming levels of 
these five pollutants, include a baseline based on autocorrelation plus a linear or 
nonlinear combination of different meteorological and traffic variables. The 
nature of these combinations is different depending on the sensor thus showing 
the importance of the spatial variability to build the models. The number of 
hourly cases, due to gaps in data predictions, can have a possible range from 
11% to 38% depending on the sensor. Depending on the pollutant, location and 
number of hours ahead the prediction is made, different types of models have 
been selected. The use of these models based on NNs can provide Bilbao’s air 
pollution network originally designed for diagnosis purposes, with short-term, 
real time forecasting capabilities. The performance of these models at the 
different sensors in the area range from a maximum value of R2=0.88 for the 
prediction of NO2 1 hour ahead, to a minimum value of R2=0.15 for the 
prediction of ozone 8 hours ahead. These boundaries and the limitation in which 
the number of cases that predictions are possible represent the maximum 
forecasting capability that Bilbao’s network can provide in real-life operating 
conditions.  
Keywords: PCA, neural networks, fluid mechanics, air pollution forecasting, air 
quality network, traffic network, Bilbao, photochemistry, chemical engineering, 
applied physics. 
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1 Introduction 

This work describes the results of a study carried out in the Bilbao area 
corresponding to years 2000 and 2001, in which data from the three existing 
networks in this city (air quality, meteorological and traffic) have been analyzed 
jointly to see if short-term, real time hourly forecasts can be obtained for SO2, 
CO, NO2, NO and O3. 
     For the period analyzed in this study (2000–2001) the main sources of SO2 
are small domestic heating systems and to a much lower extent, traffic. CO 
emissions are mainly due to traffic and, in winter, also domestic heating. As far 
as NO2 and NO emissions are concerned, a report to the Basque Government 
suggests that NOx emissions in the area are mainly due to traffic. All these 
emissions are scattered throughout the whole area and do not show an important 
spatial variability.  
     The underlying assumption for this work has been that if the system formed 
by the three existing networks can properly describe the joint evolution of air 
pollution, meteorology and traffic, a thorough analysis of their historical records 
can detect and recognize patterns and relationships among them and as a result, 
lead to the prediction of forthcoming air pollution levels. These relationships 
correspond to well known complicated fluid mechanics and photochemistry 
mechanisms, which are not always easy to model. However, the links between 
inputs (current and past values of air pollutants, meteorology and traffic) and 
outputs (future values of air pollution) can be modelled using statistical 
techniques. Since the mechanisms involved are known to be highly nonlinear, 
neural networks have been widely used [1–3]. In this work the effect that spatial 
variability has on this type of model is analyzed.  

2 Database 

Data to build and test the models were obtained from the historical records of the 
three networks existing in the area of Bilbao (Spain) corresponding to years 2000 
and 2001. In Fig. 1, the six air pollution sensors are labelled from #1 to #6 and 
the three meteorological sensors as A, B and C. Hourly values of SO2, CO, NO2 
and NO are measured at the six sensors in the area while O3 is only measured at 
locations #1, #2 and #3.  
     Temperature and relative humidity are measured at the three meteorological 
sensors, wind speed only at locations B and C, while atmospheric pressure and 
radiation only at location A. Since sensor B is nearly at sea level and C is 200 
m.a.s.l., the difference of temperature between them can be considered as a 
descriptive estimator of the true vertical thermal gradient. 
     Traffic is monitored at 181 locations throughout the central area of Bilbao 
(black zone in Fig. 1) with sensors located under the streets. At each of them, a 
variable, which represents the number of vehicles (NV) passing above each 
sensor every ten minutes, is measured. Hourly averages of NV were calculated 
and mean hourly values for the whole area were computed using measurements 
from the 181 sensors. 
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Figure 1: Bilbao and surrounding area. 

     Finally, all these variables exhibit daily, weekly and yearly cycles, so the sine 
and cosine functions of these periodicities were calculated and considered as 
additional candidate inputs. Apart from traffic, additional unknown emission 
sources were expected to show similar periodicities, so the sine and cosine 
functions could also be understood as surrogate input variables associated to 
these unknown pollutants’ emissions. 
     For this study, historical hourly records of the above mentioned variables 
corresponding to years 2000 and 2001 were available [4–7]. Data of year 2000 
were used to build the different groups of candidate prognostic models while 
data belonging to year 2001 were reserved to test and select the best model. Each 
case consisted of a complete set of values corresponding to the output and 
candidate input variables. In principle, for year 2000, 8760 hourly cases with 
data from the three networks were available. However, due to the gaps and 
missing data existing in the historical records and also those produced after data 
pre-processing, the total number of cases available of year 2000 ranged from 
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1496 in sensor n#2 to 4372 in sensor n#6 and for year 2001, (test set) ranged 
from 971 in sensor n#2 to 3337 cases in sensor n#5.The goal of this work was to 
build a group of statistical prognostic models to forecast SO2, CO, NO2, NO and 
O3 hourly levels at six locations (Fig. 1) in the city of Bilbao (Spain). The 
statistical tools employed have been several types of neural networks (NNs). 
These NNs obtained can be easily incorporated into the air pollution network 
management activities to obtain hourly forecasts [8,9,10]. The NNs are the core 
of the BISTAPOF (BIlbao Short-Term Air POllution Forecast) model. A demo 
of BISTAPOF is available at no cost from http://www.ehu.es/eolo/software/ 
bistapof_demo/index.html 

3 Results 

For the five pollutants analyzed, predictions are made using all the types of NNs 
[4–10]. However, it was necessary to analyze the effect that the spatial variability 
of pollutants’ emissions have on the different models used at each location. 
     To that end, the only pollutant that in the space and time frame of this study 
could be considered inert -SO2.-was analyzed separately. The rest of pollutants 
are involved in complex photochemical reactions that are highly site-dependant 
like the availability of VOCs or the NOx/VOC ratio and as a consequence, they 
can be expected to have a higher spatial variability  
     The tool used to detect spatial variability in the emission fields of SO2, CO, 
NO2, NO and O3 measured at each of the six sensors during years 2000 and 2001 
was Principal Component Analysis (PCA). For the five pollutants, the results of 
the PCA show that 2 factors are enough to account for fractions of the overall 
variability ranging form 79% to 92%. For each pollutant, if the measurements in 
each sensor are represented on the factor plane corresponding to the two main 
factors, it can be graphically detected clusters of sensors with similar factor loads 
and subsequently, little or non-significant spatial variability. Inversely, sensors 
with different factor loads will appear in the graph far from each other, thus 
suggesting relevant spatial variability (Fig. 2a-2e). In the case of SO2, the 
representation of the six sensors on the two-factor plane (Fig. 2a; ~80% of the 
overall variability) shows similar factor loads, and the sensors tend to cluster 
close to each other. Therefore, it can be concluded that the six sensors are 
capable of capturing the same main SO2 regimes in the area.  
     If the emissions are scattered throughout the whole area and the SO2 sensors 
“see” nearly the same, it can be concluded that the dispersion in the area of 
Bilbao covered by the six sensors of a non-reactive pollutant like SO2, can be 
described following the single box model where the SO2 is almost perfectly 
mixed in the boundary layer throughout the whole area. The single box model is 
based on the mass conservation of pollutants inside a Eulerian box. In the area 
above the 6 sensors the two mountain ranges (Fig. 1) form a box in which 
measured SO2 levels are due to emissions inside the box plus the transportation 
from or to nearby areas (advection). These SO2 apportions are associated to the 
main circulations in the area which take place forth and back along the river axis 
(SE-NW). 
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Figure 2: a–e. Factor plane for the five pollutants and six sensors. 

     In the case of CO, emissions are primarily originated by traffic throughout the 
whole area and, although involved in the photochemical reactions, CO emission 
levels are mainly associated to traffic cycles. The traffic flows in the whole area 
are similar, with low spatial variability, so emissions can also be expected to be 
similar. The results of the PCA applied to the six CO sensors show quite a 
similar behaviour (Fig. 2b), which is in agreement with the emission pattern 
originated by traffic. However, the representation in the factor plane shows that 
sensors #2 and #3 are particularly near to each other. NO2 and NO emissions are 
also mainly due to traffic [4,8,10] and these emissions do not show strong spatial 
variability. However, both pollutants are involved in photochemical reactions 
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that are highly site-dependant. The representation of NO2 and NO measured 
levels on the factor plane (Fig. 2c-2d) shows that again, sensors #2 and #3 tend 
to behave differently from the rest. Ozone levels are highly site-dependant, and 
apart from precursor emissions they also depend on the availability of VOCs and 
the NOx/VOC ratio in the vicinity of each sensor. Sensors #2 and #3 are located 
near green areas where the local availability of VOCs produced by the vegetation 
is substantially higher than that in sensor #1. This explains that the ozone 
production/destruction regimes can be expected to be significantly different in 
sensors #2 and #3 if compared with those of sensor #1. The representation in the 
factor plane (Fig. 2e~92% of the overall variability) is in agreement with this and 
strong spatial variability can be detected between sensor #1 on the one hand, and 
sensors #2 and #3 on the other hand. Being the physical distance between 
sensors #2 and #1 smaller than between sensors #2 and #3 (Fig. 1), the question 
might arise about why sensor #2 shows more similarities with sensor #3 than 
with sensor #1. This includes higher mean ozone levels in sensor #2 (37.33 
µg/m3), and #3 (34.65 µg/m3) – both above the area’s average value of 33.4 
µg/m3 (Table 1) – than in #1 (28.32 µg/m3), below the average The explanation 
is that the spatial variability mentioned above is not related to the physical 
distance between sensors, different levels of solar radiation, or different NOx 
emission patterns near each sensor, but to very local effects like the availability 
of VOCs and as a consequence, different NOx/VOC ratios leading to different 
photochemical patterns. 
     If the two-factors representation for the reactive pollutants (CO and mainly 
NO2, NO and O3) are compared, it can be seen that sensors #2 and #3 tend to 
behave differently from the rest. This is in agreement with the fact that in the 
vicinity of sensors #2, and #3 the availability of VOCs can be expected to be 
higher due to the emissions from green areas nearby. As a result, the 
photochemical reactions follow different patterns. 
     Six major types of inputs were identified in the 216 NNs finally selected for 
the prediction at a given hour H of a certain pollutant’s levels H+K=(1,…8) 
hours ahead: 
Type 1: The pollutant’s levels measured at current hour H. The information 
contained in this type of inputs is that of the autocorrelation function at a lag of 
value K hours.  
Type 2: The pollutant’s levels measured at hour H-Z, being Z the number of 
hours before H that the variable has been measured.  
Type 3. In the case of pollutants involved in photochemical reactions, the rest of 
reactive pollutants – measured at hour H or H-Z- usually also appear as inputs. 
Type 4: Traffic measured at time H and H-Z. 
Type 5. Meteorological variables, mainly radiation and wind speed at time H 
and H-Z. 
Type 6. Sine and cosine functions corresponding to the daily, weekly and yearly 
cycles. 
     Very often the typical value of Z =24-K, thus indicating the strength that the 
24 h cycle has on all the forecasts. A sensitivity analysis applied to the 216 NNs 
showed that in all cases, the inputs belonging to type 1 were the most relevant to 
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explain changes in the outputs. This indicates that predictions are made using a 
baseline, which is the autocorrelation function, that is, current values of the 
pollutants measured in the network (input type 1). In some cases (31.9%) this is 
the best option (persistence) while in others, the information corresponding to 
additional input variables (types 2-3-4-5-6) is also incorporated and combined in 
the frame of linear (51.4%) or nonlinear (16.7%) models. The rather high amount 
of models in which persistence is not outperformed indicates that although in 
some of these cases, linear or MLP models perform equally, there is no need to 
select a complicated model if a simple one (like in this case, persistence) is 
enough [10]. 
     In the case of SO2 (the only non-reactive gas in the frame of this study’s time 
and space scale), persistence is enough in as many as 68.8% of cases. It can be 
seen that for this pollutant, up to 4h ahead, in most sensors persistence is the best 
option. From 5h ahead onwards, at least in half the sensors more elaborated 
models (linear or not), which incorporate the rest of input types, are used. This 
suggests that being SO2 a pollutant whose emission levels are closely linked to 
emissions, four hours can be understood as the average period of time needed to 
detect changes in emissions and/or transportation from/to nearby areas. During 
nightly hours, perhaps persistence could be the best option for more than 4 hours 
ahead. However, in other periods of the day changes in emissions take place 
more rapidly and the persistence model might not work so well. However, the 
same model is used for daily and nightly hours so 4 hours can be considered as 
an average period for the validity of the persistence models in the case of SO2. 
     For the CO predictions up to 2 hours ahead, persistence is the best option in four 
sensors. This gas is reactive but its emission levels are mainly guided by the 
evolution of traffic. The mean autocorrelation function for traffic up to 2-4 hours 
lag, shows quite high values which explains why persistence (based exclusively on 
type 1 inputs), is the best option. Performance of persistence models was aided by 
the prevalence of moderate CO levels in the area. After 4 hours ahead more 
elaborated models (linear or not) incorporating additional information 
corresponding to the rest of input types are needed to predict CO levels.  
     For the rest of reactive pollutants like NO2, NO and ozone, autocorrelation 
(persistence) cannot be used beyond 1h-2h ahead and in some cases, like ozone, 
not even that. The reason is that concentrations are continuously varying, not 
only due to changes in the emissions but also owing to their participation in the 
photochemical processes. Therefore, predictions need to be calculated 
incorporating (in a linear or nonlinear way) additional information corresponding 
to the rest of inputs.  
     The spatial variability described above for reactive pollutants is not reflected 
in the selected model’s architecture but mainly in the relative relevance that the 
six types of inputs have on the final prediction. A sensitivity analysis shows that, 
in sensors #2 and #3, the most relevant inputs belong to type 1, followed by type 
3 and type 5. In the rest of sensors, after type 1 inputs, it is type 2 and type 4 
inputs that contribute most to build the predictions. As said before, sensors #2, 
and #3 are affected by local emissions of VOCs and the information that needs to 
be added to the prediction baseline (input type 1) must also include the past 
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behaviour of the rest of reactive pollutants (input type 3) and meteorology (input 
type 5). In the rest of sensors, there is a major single source of precursors 
(traffic) and therefore, 24h cycle corresponding to the different pollutants, 
constitutes the most powerful signal after autocorrelation.

4 Conclusions 

Air quality networks are usually designed for diagnosis purposes, being a key 
feature of a good network that it has enough time and space resolution to follow 
the evolution of the most important pollutants.  
     The air pollution network of Bilbao was originally designed as a diagnosis 
tool to describe in real time the evolution in the area of several pollutants and 
meteorological variables. The traffic network was also intended to follow the 
evolution of the traffic flow in the area of Bilbao. Bringing together the 
information from these networks, statistical models based on NNs to obtain 
short-term forecasts of air pollution levels can be built. The use of these models 
can provide the air pollution network with new forecasting capabilities. Very 
local effects have a great influence in the mechanisms of production for reactive 
pollutants. This results in an important spatial variability though the NNs can 
capture this variability and performance is not affected by this fact. 
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