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Abstract 

This study investigates the effects of three important input variables on the 
prediction accuracy of average speed emission models. These variables are 
average speed, basic traffic composition (proportion of heavy-duty vehicles) and 
model choice (COPERT, QGEPA). Sensitivity analysis (conditional NRSA) is 
used to determine to what extent the possible range in these input variables 
influences model outcomes (i.e. NOx emissions for road links), and hence 
accuracy. It is shown that maximum errors can be large (up to a factor of about 
3.5). Moreover, they are a function of the level of congestion with errors 
generally increasing with the level of congestion. Traffic composition is shown 
to most strongly affect NOx emissions (29-241%), followed by average speed (2-
168%) and model choice (0-177%). The results were similar for arterial roads 
and freeways. These results can be used to provide direction to the collection of 
model input data, further model development and model application. The 
external errors found in this study appear to be of the same order of magnitude as 
internal errors that have been reported from (partial) road validation studies. This 
implies that in terms of further improvements of traffic emission modeling, focus 
should be on both the quality of input data (application) and the quality of the 
actual emission models (model development). Given the relevance of these 
results, it would be worthwhile to extend and refine this work by including other 
air pollutant and greenhouse gas emissions, and to use more complex traffic and 
emission models.  
Keywords: accuracy, error, road traffic emission, modeling, sensitivity analysis, 
NOx, congestion. 
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1 Introduction 

Road traffic is an important global source of air pollution and greenhouse gas 
emissions and its significance is increasing. As emissions are a complex function 
of many variables, impacts and solutions are commonly evaluated using 
multidisciplinary combinations of transport, emissions and dispersion models at 
different scales, ranging from local road projects to entire urban or regional 
transport networks and even national or global emission inventories. There is an 
increasing need for valid and accurate modeling results as many national and 
local authorities are faced with difficulties in meeting air quality standards and 
other environmental policy targets (e.g. National Emission Ceilings). There is 
however limited knowledge about the reliability of calculated emissions from 
road traffic. Testing the overall accuracy of road traffic emission models (model 
validation) is difficult as “true” emission values are unknown and cannot 
practically be determined by measurement.  
     A review of current literature showed that available validation studies are 
restricted to specific models (or model versions) and specific situations. Some 
studies report on modeling results that are close to observed values, but most 
studies indicate that errors in emission predictions can be quite substantial. Two 
types of validation studies can be distinguished, namely area and road level 
studies: 
• Validation of traffic emission models at area level is possible by using 

ambient air pollutant concentration data collected downwind of these areas. 
In the US and Europe, a number of studies have compared ambient air 
sampling data or emission fluxes to the results from combined emission and 
dispersion modeling [1–4]. For NOx, differences varying between a factor 
(predicted/observed) of 1.0 [1] to 2.2 [4] have been found.  

• Validation at road level is possible for specific traffic situations during 
relatively short time periods and they include tunnel studies (e.g. [5–9]), 
near-road air quality monitoring (e.g. [10–14]) and remote-sensing studies 
(e.g. [15–18]). For NOx, differences varying between a factor 
(predicted/observed) of 0.4 [19] to 4.2 [20] have been reported. 

     The accuracy of emission model predictions is affected by both internal and 
external errors. Internal errors are associated with the emission model itself (e.g. 
emission factors). External errors are associated with the errors in model input 
variables. Road level validation studies commonly use measured input data for 
key variables such as vehicle kilometers travelled (VKT, i.e. traffic volume 
multiplied with road length), travel speeds and traffic composition (e.g. [21–23]). 
As a result, these studies tend to quantify internal errors. In contrast, area level 
validation studies tend to quantify both internal and external emission modeling 
errors, since the model predictions are often based on the combination of traffic, 
emission and dispersion models. Similarly, the use of ambient concentration data 
in road level validation studies often requires the use of dispersion models (e.g. 
[24, 25]). As a consequence, these studies validate the model chain and do not 
directly assess the accuracy of emission modeling. This complicates explanation 
of the discrepancies between ambient and modeled data. For instance, errors due 
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to dispersion modeling may have offset or amplified emission modeling errors, 
but the magnitude and direction of these errors in the validation studies are 
unknown. 
     Natural variation in traffic emissions may also complicate emission model 
validation. For instance, emissions from a traffic stream may vary substantially 
due to random fluctuations in the number of high-emitters, the number of cold-
start vehicles, etc. [26]. These factors cannot be controlled and their proportion 
in the traffic stream is often unknown. Moreover, fleet characteristics 
continuously change in time and this significantly affects emissions observations 
[27]. Thus, a model may have performed well a number of years ago, but this 
may no longer be the case for the current situation. Finally, model validation is 
not possible for situations for which there is a lack of empirical data (e.g. future 
years). 
     In conclusion, validation of road traffic emission models is difficult and only 
limited information is available. Further work to increase our understanding in 
model accuracy is thus required. The quality of emission model input data is 
obviously an important factor for the accuracy of emission predictions. In 
particular the impact of input data accuracy on emission predictions seems to be 
an area where further work would be valuable. Identification of the most 
important input data can be used to provide guidance and direction to data 
acquisition (e.g. new emission testing focused on critical aspects), further 
emission model development (e.g. focus efforts on critical aspects) and model 
application (e.g. focus efforts on collecting input data that are most relevant). 
     This study seeks to quantify maximum errors due to changes in selected 
important input variables on prediction accuracy of two selected models, and to 
assess its relevance. Although more complex emission models and input data can 
be used, as will be discussed later, this study presents a first-order assessment of 
possible emission prediction errors to assess the relevance of input data accuracy 
in relation to reported results from validation studies. 

2 Methodology 

In addition to model verification and model validation, a model itself can be used 
to examine uncertainty in the predictions of traffic emissions. Sensitivity analysis 
(SA) can be used for this purpose, as it is able to apportion prediction variability 
to specific inputs [28]. There are various SA methods [29], but mathematical SA 
is well-suited to quantitatively assess the sensitivity of a model output to the 
(possible) range of variation of an input. An important limitation of traditional 
SA is that only a small portion of the possible space of (combined) input values 
is investigated. To address this limitation, conditional one-at-a-time (OAT) 
nominal range sensitivity analysis (NRSA) will be used. In addition, graphical 
methods will be used to clarify the results where useful. 
     NRSA is applicable to deterministic models and evaluates the effect of model 
outputs exerted by individually varying only one of the model inputs (OAT), 
while holding all other inputs at constant values. Conditional NRSA conditions 
the sensitivity on specific sets of input values (scenarios). These inputs are varied 
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across their entire range of plausible values (two extreme values), which are 
derived from either test data, expert judgment or literature review. For each 
scenario the impact on the model output is then evaluated. The sensitivity of the 
model to a scenario is represented as a positive or negative percentage change 
compared to the nominal situation: 
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Enom,i and Ealt,i are the predicted total traffic emissions (kg/h) for the nominal and 
alternative scenarios (minimum, maximum) for traffic situation i, respectively. 
Here traffic situation is defined in terms of road type (arterial, freeway) and level 
of congestion (V/C ratio). As will be discussed below, Enom,i and Ealt,i are 
determined from computation of 21 different speed-congestion relationships and 
associated emission factors for two models (COPERT, QGEPA) and three basic 
traffic compositions (defined as proportion heavy duty vehicles). The maximum 
absolute error for traffic situation i (ei) is then computed as: 

( )., max,min, iii SSMAXe =       (2) 

Si,min and Si,max represent the sensitivity for the predicted minimum and 
maximum scenarios. 

2.1 Emission model selection 

Many road traffic emission models exist around the world. Of these models, so-
called average speed models are most commonly applied in practice [35]. 
Although these models are complex with respect to the number of model 
categories (e.g. vehicle classes, number of pollutants, emission types), the overall 
computation process is straight forward. Road link emissions are computed by 
multiplying a composite emission factor for a pollutant (g/km) with total vehicle 
kilometers of travel (VKT). The composite emission factor for a link presents the 
“mean traffic stream emission factor” and it is equal to the sum of the emission 
factors for all vehicle classes and the VKT-weighted proportion of these classes 
in the traffic stream. These emission factors are computed as a function of 
average link speed, but can also be corrected for other factors such as road 
gradient, air conditioning and ambient temperature. As a consequence, total link 
(and thus network) emissions, are determined by three basic variables, namely 
VKT, traffic composition and traffic conditions (congestion, road gradient, etc.). 
     Given their common use and their relative simplicity of application, two 
average speed emission models were selected for this study, namely COPERT III 
[30] and QGEPA 2002 [31]. COPERT is (and has been) extensively used for 
emission modeling in Europe and other parts of the world. QGEPA is an 
Australian model that has been developed using Australian test data in 
combination with information from other models such as MOBILE6 [32]. Using 
these two models, speed-dependent composite NOx emission factors were 
computed for three basic traffic composition scenarios (0, 5 and 20% heavy duty 
vehicles). The results are shown in Figure 1. 
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Figure 1: Composite emission factor curves for two emission models. 

     The composite emission factors were developed in different steps. Firstly, 
speed-dependent emission factors were computed for 32 vehicle classes, which 
are defined in terms of vehicle type (car, articulated truck, bus, etc.), fuel type 
(petrol, diesel, LPG) and technology type (legislative emission standards, type of 
catalyst, etc.). Secondly, these detailed emission factors were weighted using 
2003 Brisbane fleet composition data that was taken from Smit [33]. Thirdly, the 
three basic traffic composition scenarios were developed by weighting the 
proportion of light-duty and heavy-duty vehicles accordingly. 

2.2 Variable selection for simulation 

This study will focus on three basic emission model variables, namely VKT, 
basic traffic composition (proportion of light-duty and heavy duty vehicles) and 
traffic conditions (level of congestion, expressed as volume-to-capacity ratio). It 
will also include, to some extent, internal errors by using two different emission 
models. The two models will reflect differences in emissions test data (e.g. due 
to country-specific differences in emission control technology and calibration of 
the engine and emission control systems), modeling approach and development 
(e.g. choice of driving cycles, statistical modeling), presence (or absence) of 
national inspection and maintenance programs and possibly systematic 
differences in measurement results between laboratories.  
     The use of traffic field data as input has a clear advantage in terms of 
accuracy when compared to modeled data. Moreover, data from traffic models 
may be the only source that can be (feasibly) used. In the simulations, the focus 
will be on variables for which field data are relatively scarce, i.e. traffic 
composition and average speed, but not VKT as will be discussed below. 
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2.2.1 Vehicle kilometers travelled 
Efforts to improve the quality of emission model input data should focus on 
variables that have been shown to have a large effect on emission predictions. In 
this respect, the amount of travel (VKT) is a particularly important input variable 
as errors in VKT are proportionally propagated into emission predictions [33]. 
Therefore, particular attention should be directed at obtaining accurate 
information on traffic volumes. Compared to other input variables such as 
average speed and traffic composition, accurate VKT estimates for roads are 
relatively easy to obtain as traffic count data are commonly measured at various 
points (e.g. automatic detection, manual counting surveys) in road networks. 
Errors in VKT input, and thus emission prediction, are relatively small compared 
to traffic composition and average speed (as will be shown later), and this 
variable is therefore not included in the simulations. 

2.2.2 Basic traffic composition 
Basic vehicle classification data (e.g. light vehicle, heavy vehicle, perhaps a few 
heavy vehicle sub classes) is usually available for major roads. However, more 
comprehensive classification data, needed for emission estimation, is more 
difficult to obtain since they are usually collected by less common manual 
classified counting surveys or video image surveys [34]. For a detailed 
breakdown of (mean) traffic composition, additional data is commonly derived 
from other sources such as the National Bureau of Statistics and fleet turnover 
modeling. Following analysis of the Brisbane road network [32], a minimum, 
nominal and maximum value for the proportion of heavy-duty vehicles in the 
traffic stream of 0%, 5% and 20%, respectively, was determined for use in the 
sensitivity analysis. 

2.2.3 Level of congestion 
Average speed is needed as input to the selected emission models. Average 
speed, however, is not an adequate congestion indicator in certain speed intervals 
(between about 15 and 60 km/h) as the relationship between average speed and 
level of congestion is road-type specific [35]. As average speed models are based 
on emissions tests using driving cycles that typically run for about 10 minutes, 
the definition of average speed needs to be carefully considered when input 
speed data are collected. For instance, speed data measured at certain points in 
the network (e.g. by dual-loop detectors) can only be used when they represent 
average speeds for traffic conditions that are relatively homogeneous and stable 
over some distance of road (e.g. free-flow freeway driving away from on- and 
off ramps). On the other hand, average speeds measured on specific segments of 
road or entire routes using travel time studies [36] would align with the spatial 
resolution of driving cycles, but are only available to a limited extent. 
     There are several indicators for congestion but volume-to-capacity ratio (V/C) 
is a good one, since it combines the two principal causes of congestion (traffic 
demand and capacity) into one variable. Because of the availability of volume 
and capacity figures for network links and widespread acceptance by most 
transport agencies, V/C has been widely used as a fundamental congestion 
indicator [33]. To assess the relationship between prediction errors and 
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congestion, a mathematical relationship between average speed and traffic 
conditions is needed and congestion functions can be used for this purpose. 
Congestion functions are used extensively in (macroscopic) traffic modeling and 
they are often calibrated using experimental data. They have evolved from 
relatively simple functions to more complex (sets of) equations by incorporating, 
for instance, traffic flow theory (e.g. queuing theory). The variables of traffic 
volume, road capacity and (mean) free-flow speed are fundamental to all 
congestion functions. The Akçelik function [37] is given as an example: 
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where *T represents mean unit travel time (min/km), which is (approximately) 
the reciprocal of average speed, *

ffT represents free-flow unit travel time 
(min/km), V/C represents volume-to-capacity ratio, τ represents the time period 
over which traffic flow exceeds capacity (min), C is the road capacity (veh/h) 
and JA is a delay parameter which is a function of road characteristics (e.g. signal 
density, signal coordination).  
     The posted speed limit on a road is often assumed to approximate the free-
flow speed. Drivers tend to comply, on average, within certain margins above 
and below the speed limit in free-flowing traffic conditions. Therefore, the 
maximum mean speed in free-flow conditions is set to the speed limit plus 15 
km/h for arterial roads and to the speed limit plus 25 km/h for freeways [38]. The 
minimum mean speed is set to 5 km/h below the speed limit for both arterials 
and freeways, and this can occur in specific conditions such as roads with strict 
radar control [35]. Using seven different congestion functions from a literature 
review [33] in combination with the three possible free-flow speeds (speed limit, 
minimum, maximum), an envelope of plausible mean speeds by level of 
congestion, including nominal speeds, has been computed for two basic road 
types (arterial, freeway).  
     The results are presented in figure 2 (next page). It shows that congestion has 
a large effect on average speed, and that congestion functions exhibit an inverted 
S-shape relationship between volume-to-capacity ratio and mean speed. The 
largest difference between congestion functions (50 km/h) occurs when traffic 
demand is near road capacity (V/C about unity).  
     For the sensitivity analysis is has been assumed that the range of average 
speed predictions by the different congestion functions represent the range of 
plausible values. The Akçelik function (eqn. 3) is the most complex function and 
its parameters have been calibrated using the aaSIDRA model, which is 
commonly used by traffic engineers around the world. Therefore this congestion 
function was taken to present the nominal situation as it provides probably the 
most accurate prediction of mean speed when the various functions are 
compared.  
     In the sensitivity analysis the three speed-congestion curves (minimum, 
nominal, maximum) for each road type, as depicted in figure 2, are used. 
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Figure 2: Plausible mean speed range and nominal speed by road type. 

3 Results 

Figure 3 (next page) presents the envelope of computed maximum absolute 
errors for average speed as a function of level of congestion and road type. It can 
be seen that errors can be quite substantial with a factor of up to 2.7 higher NOx 
emissions compared to the nominal emissions value in freeway conditions, 
which was computed using the Akçelik function (eqn. 3). Errors are also 
dependent on congestion level, where relatively low errors (< about 30%) are 
computed for uncongested traffic conditions (V/C < 0.7). Errors peak when 
traffic flow approaches road capacity (V/C about 1), after which they are reduced 
but can still be substantial (< 60%). Although there are some differences (e.g. in 
maximum error value), road type does not seem to be an important factor in the 
relationship between prediction error and congestion level. The maximum values 
are consistently computed for one scenario, i.e. the COPERT model with 20% 
HDVs (denoted as COPERT/20%). However, the minimum values are computed 
for various scenarios depending on road type and congestion level, but include 
COPERT/0%, QGEPA/0% and QGEPA/20%. Interactions with traffic 
composition and model choice were observed in the simulations (not shown). 
For COPERT, errors generally increased with proportion HDVs; whereas, for 
QGEPA, errors generally decreased with proportion HDVs. 
     The extent of prediction error is dependent on two factors, i.e. the shape of 
the composite emissions curve and the difference in predicted average speeds. 
The location of the minimum value and the degree of non-linearity of both legs 
(left and right of the minimum value) of the parabolic curve are most relevant in 
this respect. For instance, figure 2 showed that for congested freeway conditions 
(V/C = 1) predicted average speeds can vary between 8 and 109 km/h with a 
nominal value of 68 km/h. Table 1 presents computed NOx emission factors, 
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sensitivities and maximum absolute errors for all scenarios (model, basic traffic 
composition). The strongly increasing and non-linear shape of the COPERT/20% 
composite emission factor curve at lower speeds, as was shown in Figure 1, 
results in a large increase in the emission factor for the nominal situation, and 
subsequently in a large sensitivity and error. In contrast, QGEPA/20% has 
substantially less non-linearity and also relatively large emission factors, which 
results in lower sensitivity and the lowest (maximum) error for this traffic 
situation. 
 

 

Figure 3: Envelope of maximum absolute errors for mean speed. 

Table 1:  Composite emissions factors, sensitivities and errors for traffic 
situation “Freeway, V/C = 1.0” for all six scenarios. 

Average 
Speed 

Composite NOx Emission Factors 
QGEPA 

Composite NOx Emission Factors 
COPERT 

0% HDV 5% HDV 20% HDV 0% HDV 5% HDV 20% HDV 
(km/h) (g/km) (g/km) (g/km) (g/km) (g/km) (g/km) 
8 1.80 2.42 4.26 0.70 1.40 3.49 
68 1.09 1.58 3.04 0.76 0.90 1.31 
109 1.19 1.79 3.61 1.18 1.32 1.72 
Si,min 65% 53% 40% -9% 55% 167% 
Si,max 8% 13% 19% 55% 46% 32% 
ei 65% 53% 40% 55% 55% 167% 

 
     Figure 4 presents the envelope of computed maximum absolute errors for 
basic traffic composition as a function of level of congestion and road type. It 
can be seen that errors can be large with a factor of up to 3.4 higher NOx 
emissions compared to the nominal emissions value (5% HDV) in both arterial 
freeway conditions. Errors are again dependent on congestion level, where 
smaller errors (50% to 100%) are computed for relatively uncongested traffic 
conditions (V/C < 0.7 for arterial, V/C < 1.0 for freeways). For more congested 
conditions, errors increase with congestion level. Road type does not seem to be 
an important factor in the relationship between prediction error and congestion 
level, although errors can be slightly higher in arterial driving conditions. 
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Figure 4: Envelope of maximum absolute errors for basic traffic 
composition. 

     Maximum error values are computed for QGEPA/max (maximum speed 
scenario) for V/C ratios less or equal to 0.8 (mean speeds higher than 55 km/h 
and 100 km/h for arterials and freeway, respectively) and for COPERT/max for 
V/C ratios larger than 0.8. In fact, error values computed for the QGEPA model 
are relatively stable and vary between 70% and 100%, where errors are reduced 
when congestion level increases. COPERT, on the other hand, is much more 
sensitive to congestion with errors starting from about 30-50% at free-flow 
conditions and then consistently increasing when V/C ratios exceed 0.5 (arterial) 
or 0.8 (freeway) up to errors between 120-240%. 
     As for average speed, the extent of prediction error is dependent on two 
factors, i.e. the shape of the composite emissions curve and the difference in 
predicted average speeds. In addition to the degree of non-linearity of the 
parabolic curve, the relative difference between composite emission factors for 
the nominal traffic composition and the minimum and maximum traffic 
compositions is relevant in this respect. Figure 1 shows that the relative 
difference between QGEPA/5% and QGEPA/20% is large and only varies 
slightly (75-100%) with congestion. In contrast, the relative difference between 
COPERT/5% and COPERT/20% is small at high speeds (30%) but consistently 
increases after that (up to 240%), having a larger difference than QGEPA at 
mean speeds below 35 km/h, which explains the increase in maximum error. 
     Figure 5 presents the envelope of computed maximum absolute errors for 
model choice as a function of level of congestion and road type. Although not an 
error in a strict scientific sense (we do not know which model is more accurate, 
so no baseline values were computed), this term is applied to be consistent with 
previous discussions. Nevertheless, model comparison provides a sense of 
possible internal errors that may arise from the arbitrary choices that were made 
and test data that were used in the development phase of the models. 
     It can be seen that errors can be large in highly congested conditions with a 
factor of up to 2.8 higher NOx emissions in both arterial freeway conditions. 
Errors are to some extent dependent on congestion level, where relatively stable 
errors for arterials (approximately 30-60%) and freeways (approximately 10-
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60%) occur until traffic conditions reach capacity. After this point, errors remain 
stable except for arterials where errors can be close to zero. Only at very 
congested conditions (V/C > 1.7, mean speeds < 25 km/h), maximum errors 
increase further to a maximum value of about 180%. 
 

 

Figure 5: Envelope of maximum absolute errors for model choice. 

     The extent of prediction error is dependent on two factors, i.e. the shape of 
the two composite emissions curves for a particular basic traffic composition and 
the difference in predicted average speeds. The relative difference between 
composite emission factors for both models is clearly relevant in this respect. 
Comparison of COPERT and QGEPA composite emission factor curves (refer to 
figure 1) reveals that QGEPA generally predicts higher emission factors than 
COPERT and that for mean speeds smaller or larger than 36 km/h relative 
differences are largest for a basic traffic composition of 0% HDV or 20% HDV, 
respectively. For low speeds (< 25 km/h), where largest errors occur, the relative 
differences between QGEPA and COPERT composite emission factors vary 
between factors of 2.3 to 2.6, which explain the large error for these traffic 
situations. 

4 Discussion and conclusions 

This study has shown that emission predictions at road level are sensitive to 
possible errors in key input data consisting of traffic activity (VKT), mean speed 
and basic traffic composition, and model choice. The magnitude of possible 
errors for mean speed, traffic composition, and model choice were found to be 
dependent on level of congestion. It was also shown that interaction effects exist. 
The magnitude of these external errors can be substantial (up to a factor of 3.4). 
Importantly, they appear to be of the same order of magnitude as internal errors 
that have been reported from partial road validation studies. This implies that in 
terms of further improvements of traffic emission modeling, focus should be on 
both the quality of input data (application) and the quality of the actual emission 
models (model development). 
     One limitation of this study is its focus on NOx. Given the results of this 
work, it seems valuable to examine the relationships between prediction errors 
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and level of congestion for other air pollutants (e.g. PM10, speciated 
hydrocarbons and greenhouse gas emissions). 
     There are some accuracy issues that have not been addressed in this work. A 
primary issue is that average speed models do not explicitly take driving 
dynamics into account [38]. This may introduce substantial errors in the 
emission predictions. For instance, NOx emissions from an average Euro 3 petrol 
car could vary between about –80% to +200% around the COPERT estimate for 
an average speed of 60 km/h [39]. However, Smit et al [35] showed that driving 
dynamics are implicitly included as lower mean speeds in the real-world are 
naturally the result of, for example, more speed fluctuation and idle time.  
     Another issue is the use of a single (mean) speed for all vehicles on a section 
of road. In reality a distribution of average speeds would apply to a traffic 
stream. Smit et al [38] showed that this can potentially lead to substantial errors 
(up to 75%) in road link emissions. In order to address these issues, the work 
presented in this paper could be extended and refined by using more complex 
emissions models like VERSIT+ [39], PHEM [40] and DIVEM [41] and by 
using vehicle-specific driving behavior data in the simulation process, which 
could be sourced from microscopic simulation models [42]. 
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