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Abstract 

In this paper a model for the forecast and control of atmospheric pollution caused 
by particulate matter (PM10) is proposed. It is based on the use of cellular neural 
networks (CNNs).  
     More precisely, the model is the result of the integration of the mass balance 
equation and, at the same time, by the use of cellular neural networks (CNNs) 
and Bayesian networks in the context of a planar grid which describes a whole 
urban area; we considered the “areal” sources conditioned by meteorological and 
pollutant parameters. 
     The CNNs allow one to define a cellular system which gives the redefinition 
of the mass balance equation trough a dynamic discrete rule (update) that 
considers the contributions of the near cells. 
     Bayesian nets provide the forecast in a fixed time interval which will be used 
for the determination of the pollutant amount in the interested area. Dynamics of 
the single cell feel the effect of meteorological and environmental parameters; 
contributions of these parameters are considered by means of some weights that 
will be determined through the minimization of an error index that is a function 
of the estimated data and the provisional data coming from the learning process 
by Bayesian networks tested with values from monitoring stations. The results 
obtained with this approach are quite interesting and the proposed model 
produces innovative results because it takes advantage of the combination of two 
models: CNN (for mesoscale topology) and Bayesian network (for the daily 
forecast of the PM10 concentration). 

1 Introduction 

Controlling possible sources of atmospheric pollution and prevention critical 
events has become a relevant problem in our increasingly degraded environment. 
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Air pollution produced by motor vehicles is one of the most serious and rapidly 
growing problems in the urban centers of Italy (but the situation is not different 
in many other parts of the world) [18].  
     Moreover, concentrations of atmospheric pollutants change rapidly with 
meteorological variables such as wind speed and direction, temperature, 
humidity and quantity of rain precipitations, solar radiation.  
     The PM10 (Particulate Matter with less than 10 µg/m3 of diameter) is one of 
the most harmful air pollutants. Its levels are particularly high in the town of 
Palermo (Italy) and therefore they have captured researcher attention in the last 
few years [15]. 
     The air pollution models can help to analyze the impact of pollutants in a 
specific study area and to identify and quantify cause-effect relationships 
between polluting sources and air quality, allowing us to evaluate different 
scenarios [3][6]. 
     Many different mathematical models have been used in the study of this 
problem [16] and in the last few years soft computing techniques have been used 
in similar problems, providing good results. Their success depends on their 
possibility of dealing with systems affected by uncertainty. In fact, theories such 
as fuzzy logic, neural networks, and Bayesian networks have been applied to this 
topic [1, 2]. Neural networks, in particular, have often been used in predicting 
atmospheric pollutant concentrations [11]. 
     The aim of our work is to develop a probabilistic model for an input part and 
a deterministic model for the prediction of atmospheric pollution critical events. 
We used data measured in the urban area of Palermo by several monitoring 
stations deployed in the town. They were the PM10 concentration and 
meteorological parameters that include rain, humidity, wind speed and direction 
at the different hours of the day. We illustrate a method based upon the 
application of Cellular Neural Networks (CNN) for modeling the PM10 
concentrations in the whole city of Palermo (the ours mesoscale) considering 
values obtained by Bayesian networks trained with data measured from 
monitoring stations.  
     In the next section we will discuss the significant characteristics of Cellular 
Neural Networks. In the third paragraph we analyze the CNN models of PM10 
and we discuss typical network topology and parameters.  In the fourth section 
we report the several optimization method used and the best one, in the fifth 
section we report the experimental results. Finally, some conclusions are drawn 
about the proposed approach and future works. 

2 Cellular Neural Networks: basics and applications  

Cellular Neural Networks (CNNs) have been applied in very different fields, and 
they proved successful in several applications allowing one to solve 
problems [4, 5]. 
     Some real applications include image processing, PDE resolution, intelligent 
pattern and motion detection, bioinformatics and memory association. CNN, also 
called Cellular Nonlinear Network, constitute an elaboration model proposed by 
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Chua and Yang in 1988 [7], defined like a set of non-linear circuits in an n-
dimensional space with a parallel and asynchronous elaboration structure.  
     CNNs can work with continuous or discrete values. Generally, CNN data and 
parameters have continuous values.  
     The fundamental building block of the CNN is the cell. The CNN is an array 
of cells. Every cell is a performing element with several inputs and one 
individual output.  
     The cells are arranged in one or more layers on a regular grid. Each cell 
influence evolution of a finite number of cells called “neighborhood” [4]. 
     The definition of a cell neighborhood is univocally identified by a metric and 
a radium; more precisely an r-neighborhood of C(i,j) is 
 

{ }Nl1M;k1r,j)i,l,(k,d|l)(k,Cj)(i,N ≤≤≤≤≤=           (1) 
where { }0Nr −∈  is the radium. 
     The influence relation among cells is said “Sinaptic law” that defines the 
coupling between the considered cell Ci,j and all cells Ck,l within their 
neighborhood [4]. This law is expressed as: 
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More precisely interactions between cells are local and usually translation 
invariant, but these interactions indirectly cause a propagation of local effects 
over all the cells. The cell core can be any dynamical system. In the case of 
continuous-time CNN the dynamic is defined by: 
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where: 
)u,z,(xg ααα  is the cell state derivative;  

Is
α  is the “synaptic law”; 

)x(f j,i is the output function. 
     In most cases a linear CNN is utilized, where cell dynamics are governed by 
the following differential equation 
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where: 
{ }l)k,j,a(i,  is the feedback coefficient set about the output; 
{ }l)k,j,b(i, is the control coefficient set about the input; 

(t))f(x ji, is the output function. 
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     Besides, CNN defines boundary conditions that determine the bias of the 
outer cells on boundary cell dynamics [5].  
     From the computational point of view a two-dimensional CNN is a model of 
calculation that summarizes some typical characteristics of the neural nets and 
the Cellular Automata. In contrast to other types of artificial neural networks the 
interaction between CNN cells can be given by nonlinear functions. 
     Different to well known neural nets, in CNN the concepts of hidden layers 
and Feed-Forward are missing, but there is a Feed-Back concept.  

3 CNN models of PM10 pollution  

In this work we aim to provide an estimation (prevision every two hours, from 8 
a.m. to 22 p.m) of the PM10 concentrations on the mesoscale (the area of interest 
is defined as the area where monitoring stations, providing pollutant values and 
meteorological parameters, are located) and the areas influenced by the diffusion 
and production of the PM10 in the cells of the whole grid. The mesoscale is 
constituted by cells covering an area of 1 km2. 
     The pollutant concentration in a cell at time k+1 depends on pollutant 
concentration released at time k and pollutant components that came from the 
near cells. 
     All of that is conditioned by meteorological data course that is present 
through a functions template with parameters that will be defined from a 
pollutant concentrations identification process in order to obtain the best value 
that summarizes all phenomena that exist in the considered urban area.  
     The pollutant concentrations and meteorological parameters determination 
has happened through an optimization process of an error function (the broadcast 
average error) having as inputs the forecast data given by Bayesian nets [10] and 
the values obtained by the CNN evolution (mean square error). The implemented 
model is reported in figure 1. 
 

 

Figure 1: The implemented forecasting model. 

     To realize the model we considered a CNN obtained by discretizing the mass 
balance equation in space and time. Such a model turns out from the disposition 
on planar n×m dimension grid. 
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3.1 CNN Model of the cell C(i,j).  

We considered a CNN model that is related to a model referred to as the mass 
balance principle, [8][9] redefined according to exogenous variables and to the 
state x  coinciding with urban, environmental and meteorological parameters. 
The x  vector is represented as: 
 

[ ] )h,j,i(RainHumWyWxYellowTlGreenTldTlReRoadsPopRugC

with: 
C is the pollutant concentration; 
Rug is the rugosity coefficient; 
Pop is the number of resident people; 
Roads are total length (in Km). 
RedTl, GreenTl, YellowTl constitute different traffic controller (traffic light); 
Wx and Wy are the wind components; 
Hum is the humidity; 
Rain is the quantity of precipitations.   
     Therefore, from a second order PDE [3]: 
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we will have a discretized equation in space and in time for the update of PM10 
component at time k+1: 
 

( ) ( ) ( )[ ] )j,ix(fRainijCdis)j,i(N)l,k(c ))l,kx)(fHumfWind(kijSkijC1kijC ∗−∑ ∈++=+  
 
(6) 

where: 
( )ijS k  is the pollutant amount released in cell i,j; 

,P(fWind j,ixw

parameterized in vector Pw; 
)P(fHum j,ixH  is the value that conditions the pollutant dispersion parameterized 

in vector PH ;  
),(fRain j,ixPR  is the value that conditions the pollutant dejection parameterized 

in vector PR  
     Moving from the PDE mass balance equation [6] to the previous update 
equation we redefined the molecular diffusion phenomenon, the vertical 
component of  wind, the coefficients Kxx and Kyy that are independent from x 
and y and the removal phenomena with the replacement of relations which 
consider the meteorological parameters and rugosity. 
     For the pollutant production in the cell, the following socio-ambient 
parameters are considered: 
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• number of citizens resident in cell Ci,j; 
• number of traffic lights installed in the cells of the network; 
• total length (in Km)  of  principal roads that could be run by motor 

vehicles in considered time range.  
The source at time k will result be sum of three components  
 

( ) ( )
n
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= ×∑                                        (7) 
 

( ), ,k i jΓ  is the value better fitting PM10 evolution in similar cell, concerning 
urban parameters, where is installed the monitoring station;  
     The contribution of every member is outside the following polynomial weight 
function: 
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ijlP  is the l-th urban parameter.  
     The cell (i, j) is characterized by a neighbors set which depend on an r order 
and on d metrics. 
     For own model we have choose the Von Neumann [4] neighborhood namely 

 

d = max(|i-m|+|j-n|) 
 

r = 1  
the resultant neighborhood for a generic inner cell is reported in figure 2. 
 

     

  Ci-1,j   

 Ci,j-1 Ci,j Ci,j+1  

  Ci+1,j   

     

Figure 2: Neighborhood for a generic inner cell Ci,j. 

     Such a choice has been motivated by the fact we considered the wind field 
turning in the two directions (North and East). 
     For our model, we choose the fixed (Dirichlet) [4] boundary conditions, 
namely 

0x l,k =  if the cell C(k,l) do not belong to the CNN lattice. 
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4 The used optimization method  

In order to obtain the pollutant concentrations and the functions template 
parameters that give the best forecast of the pollution value in studied area, an 
optimization procedure [10] that requires the use of a standard technique, 
Adaptive simulated annealing (ASA) [14], has been executed. 
     This optimization problem belongs to the class of multivariate, continuous, 
quadratic nonlinear and constrained problems. 
     We used three simulation methods that provide the initial stadiums and the 
parameters that minimize the error function: Particle Swarm Optimization 
(PSO)[12], Downhill-simplex [13, 17] with constraints, and ASA [14].  
     These optimization methods have been chosen because of the high number of 
model variables and because it would have been difficult to calculate the gradient 
on the control variables representing the initial states.   
     Our optimization problem requires the function to minimize (the mean square 
error): 

( ) ( )[ ]2
Tj)(i, k

kijCkijC
kNcN

1E ∑
∈

∑ −=                             (9) 

where T is the cells set containing monitoring stations of the obtained CNN-
solution for the cell containing the monitoring stations.  
     Control variables, placed in a vector, turn out form 
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where: 
Ci,j(0) is the initial time PM10 value for the generic cell without monitoring 
stations; 
w  is the array of weights that is related to polynomial weight function (8) ; 
P is the vector that identifies meteorological parameters and functions (6).  
PSO has been used because well right at the functions study with several 
parameters. 
     The downhill-simplex-method requires no explicit gradient information, 
while ASA [14] allows us to better explore the research space avoiding the local 
minimums in a way that can obtain a best error minimum and the global 
minimum.   
     With several simulations we observed that the best results have been 
produced using the ASA method. 

5 Experimental results 

We conducted several experiments, applied to the city of Palermo, with a single 
network topology but with different dynamic laws of cells and consequently 
considering different values of the parameters.  
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     We used historical data from the beginning of 1998 to end of 2002 to update 
the probabilistic tables of the Bayesian networks and then we used the prediction 
provided by Bayesian network to obtain previsions of PM10 pollution in cells of 
CNN, missing of monitoring stations in first months of 2003. 
     After we have applied the minimization process previously described, the 
broadcast average error has been approximately 22%.    
     Some optimization process results (Pm10 distribution and model template 
functions) are shown in the tables 1 and 2 for January 12, 2003.   
     The model template functions and the source weights vector are: 

,( , , ( , , ) ) ( ) exp( )i jfWind wRug wRugExp v c rug wRug abs v c wRugExp rug= × × × − ×  
where: wRug is 0,0104, wRugExp  is 2,07. 

( , , ) 0 100
100

lower upperfHum lower upper u upper u with u−
= + × ≤ ≤  

where: lower  is 0,263, upper is 0,862. 
{ }

{ }
( , , , ) max ,exp( )

0 ;

fRain alpha lower wRain r wRain lower alpha r

with r

= × − ×

∈ℜ∪
 

where: alpha is 0.0856, lower  is 0.727, wRain  is 0.894. 
 

[ ]1.08 1.03 1.48 Re 1.37 0.489Tw wRoads wGreen wBlu w d wPop= = = = = =  
 

     The results obtained with experimental simulations are quite interesting and 
we observed that similar cells have a congruous trend with the reference cell. 

6 Conclusions 

In this paper a model for the forecast of PM10 pollution is proposed. This model 
is based on the use of Cellular Neural Networks (CNNs) for the mesoscale 
topology and Bayesian networks for the daily forecast of pollutant concentration. 
It has been applied to the city of Palermo using PM10 concentrations and 
meteorological data measured by several monitoring stations. We have obtained 
interesting results but in the future we expect to improve the model behaviour by 
addressing the following limits of the model: 

• the small volume of data for the vehicular traffic volumes in the city 
roads; 

• the low granularity of the model – the greater number of cells that the 
net is composed of the better the performance of the model; 

• results could improve if tridimensional CNN is adopted. 
     The model studied could be used to support the following operating scenario: 
the municipal authorities acquiring the measurements of the relevant parameters 
can soon have an estimation of the levels of PM10 with respect to the law limits 
that is sufficiently affordable to quickly establish specific restrictions on traffic 
in order to deal with the presence of critical events. 
     Table 1 shows the sea cells zone, and some similar cells. 
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Table 1:  Pm10 Distribution at 20.00. 

 
 
 

  
Figure 3: PM10 Isometric graphic at 20.00. 

Acknowledgements  

We would to thank: Azienda Municipalizzata Igiene Ambientale (AMIA) - 
Palermo, Club Albaria: Associazione sportiva Albaria – Mondello (Pa), 
Osservatorio Astronomico "G. S. Vaiana" (INAF) - Palermo,  SIAS Servizio 
informatico agrometeorologico siciliano (Assessorato regionale agricoltura e 
foreste) – Palermo, Ufficio Statistica – Palermo, Comando Polizia Municipale di 
Palermo for providing the atmospheric pollutant and meteorological data we 
used. 
 

 © 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 86,
 www.witpress.com, ISSN 1743-3541 (on-line) 

Air Pollution XIV  129



References 

[1] Cossentino M., Raimondi F.M., Vitale M.C., Bayesian models of the 
PM10 atmospheric urban pollution. Proc. of Air Pollution 2001 
Conference, pp 143-152, Ancona, Italy, 2001. 

[2] Cossentino M., Damiani A., Gaglio S., Raimondi F.M., Vitale M.C. 
Exploring the use of soft-computing and artificial intelligence techniques 
in atmospheric pollution modelling. Proc. of the Air Pollution 2003 
Conference, Catania, Italy, Sept 2003.   

[3] Finzi, G. & Brusasca, G., La qualità dell’aria. Modelli previsionali e 
gestionali, Masson: Milano, 1991.  

[4] Manganaro, G., Arena, P., Fortuna, L. Cellular neural Networks, Chaos, 
Complexity and VLSI Processing.  Springer-Verlag: Berlin Heidelberg, 
pp. 3–42, 1999.  

[5] Hanggi, M. Moschytz, G.S. Cellular Neural networks, Analysis, Design 
and Optimization, Kluwer Accademic Publisher pp. 1-9 pp. 83-124, 2000.  

[6] Finzi, G., Pirovano, G., Volta, M. Gestione della qualita' dell'aria. 
Modelli di simulazione e previsione. McGraw-Hill, 2001. 

[7] Chua, L.O. & Yang, L. Cellular Neural Networks: Theory and 
Applications. IEEE Transaction on Circuits and Systems, vol. 35, pp 
1257-1290, 1988. 

[8] Arena, P., Baglio, S., Manganaro, G., Fortuna, L. Air quality modeling 
with CNN’s European Conference on Circuit Theory and Design. Vol II 
pp. 885-888, 1995. 

[9] Fortuna, L. Graziani, S., Manganaro, G., Muscato, G. The CNN’s as 
innovative commuting paradigm for modeling Proc. of IDA Word 
Congress on desalination and water sciences, Vol IV pp. 399-409, 1995. 

[10] Russel, S. & Norvig, P., “Artificial Intelligence. A modern approach”, 
Prentice Hall International Editions, 1995. 

[11] P. Perez, A. Trier, C. Silva & R. Montaño Prediction of Atmospheric 
Pollution by Particulate Matter Using a Neural Network. Proceedings of 
the 1997 International Conference on Neural Information Processing and 
Intelligent Information Systems, Dunedin, New Zealand, pp. 24-28 (1997). 

[12] Kennedy, J, & Eberhart, R.C. Particle Swarm Optimization, Proc.  of the 
1995 IEEE International Conference on Neural Networks, pp. 1942-1948, 
IEEE Service Center, Piscataway, N.J., 1995. 

[13] J.A. Nelder, R. Mead, A Simplex Method for Function Minimization, 
Computer Journal 7, 308-313, 1965.  

[14] Ingber, L. Adative Simulated Annealing, Special Issue of the Polish 
Journal Control and Cybernetics on SA Applied to combinatorial 
optimization, 1995. 

[15] C. Pope, D. Dockery, J. Spengler et al. Respiratory health and PM10 
pollution. Am. Rev. Respir. Dis. 144(3) pp. 665-674 (1991).  

[16] D.J. Moschandreas, S. Saksena Modeling exposure to particulate matter. 
Chemosphere 49(9) 1137-1150 (2002). 

 © 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 86,
 www.witpress.com, ISSN 1743-3541 (on-line) 

130  Air Pollution XIV



[17] Press W. H., Flannery B. P, Teukolsky S. A. Detterling W.T., Numerical 
recipes in Pascal. De art of Scientific Computing, Cambridge University 
Press, Cambridge, 1989 cap 10.4. 

[18] Viegi G., Carrozzi P.L. & al., Prevalence rates of respiratory symptoms in 
Italian general population samples exposed to different levels of air 
pollution. Env. Health Perfect, pp. 94:95-99, 1991. 

 © 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 86,
 www.witpress.com, ISSN 1743-3541 (on-line) 

Air Pollution XIV  131




