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Abstract 

This paper focuses on the prediction of hourly levels up to 8 hours ahead for five 
pollutants (SO2, CO, NO2, NO and O3) in the area of Bilbao. Traffic, 
meteorological and air pollution network data corresponding to the years 2000 
and 2001 have been used. 216 specific models based on different types of neural 
networks have been built using data for the year 2000. For each of the 216 cases, 
the choice of the best model has been made under the criteria of simultaneously 
having at a 95% confidence level the best values of R2, d, FA2 and RMSE when 
applied to the data for the year 2001. Depending on the pollutant, location and 
number of hours ahead the prediction is made, different architectures have been 
selected. In the case of SO2 and CO, in most cases persistence of levels or linear 
models outperformed those based on neural networks. Predictions of NO2 and O3 
hourly levels required in most cases linear models while MLP, RBF or GRNN 
architectures were needed in few predictions. For the predictions of NO, linear 
models in some cases and MLP, RBF or GRNN based models in others, were the 
major options. In spite of the different architectures and also the different 
explanatory mechanisms involved the performance of the selected models is very 
similar. 
Keywords:  air pollution forecasting, neural networks, MLP, RBF, GRNN. 

1 Introduction 

Air quality networks are usually designed for diagnosis purposes, being the most 
important feature of a good network, that it has enough time and space resolution 
to follow the evolution of the most important fields of concentrations of 
pollutants. Very often, the same network also measures meteorological variables.  
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     Bilbao is located North-central Spain (Europe) and as many other urban 
environments in the world has air pollution problems, mainly due to 
photochemical smog [1, 2].  
     This work describes the results of a study carried out in Bilbao (Spain) 
corresponding to years 2000 and 2001, in which data from the three existing 
networks (air quality, meteorological and traffic) in this city have been analyzed 
jointly to see if short-term real time hourly forecasts can be obtained for ozone, 
NO, NO2, SO2 and CO.  
     The underlying assumption for this work was that if the system formed by the 
three existing networks can properly describe the joint evolution of air pollution, 
meteorology and traffic, an analysis of their historical records to detect and 
recognize patterns and relationships among them, can lead to the prediction of 
future air pollution levels. These patterns and relationships relating overall inputs 
(current and past values of air pollutants, meteorology and traffic) and outputs 
(future values of air pollutant) can be described using statistical techniques. The 
statistical models obtained in this way will be used to forecast future levels of air 
pollutants. Due to the highly non-linear effects known to be involved, different 
types of neural networks (NN) were used to build the models. 

2 Methodology 

The most popular type of NN used in air pollution has been the MLP. A MLP 
network with one single intermediate layer and a sigmoid activation function is 
at least theoretically, able to approach any function if correctly trained [3]. 
However, if the network must learn a function which shows discontinuities two 
hidden layers may be required [4]. In general, using more than one hidden layer 
provides greater flexibility and enables approximation of complex functions with 
fewer connection weights [4]. The main features of MLP’s have been widely 
explained in the literature [5, 6] 
     For this work two more types of NN were also used as candidate techniques 
to model the complex relationships that exist among air pollution, meteorology 
and traffic: Radial Basis Functions (RBF), and Generalized Regression Neural 
Network (GRNN). 
     RBF networks represent another type of NN with an input layer, an output 
layer and a hidden layer of radial units each actually modeling a Gaussian 
response surface. The network outputs are then calculated as a weighted sum of 
the Gaussian outputs. The standard RBF has an output layer containing dot 
product units with identity activation functions and one single layer is in 
principle, enough to model any non-linear function [5, 7, 8]. A comparison of the 
performance between MLP and RBF models to predict daily concentrations of 
PM2.5, suggests that RBF networks show the best behaviour and stability and 
shortest training times [9]. 
     GRNN’s are intended for regression purposes [8, 10, 11] and have two hidden 
layers. The first hidden layer in the GRNN contains radial units and the second 
hidden layer consists of neurons that help to estimate the weighted average. The 
second hidden layer always has exactly one more unit than the output layer. In 
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regression problems, typically only a single output is estimated, and so, the 
second hidden layer usually has two units [8]. 
     One of the problems when building neural networks is when overfitting takes 
place. If at the training stage, the network parameters are calculated after too 
many cycles (epochs) the network may reproduce various idiosyncrasies 
associated to the random noise variation of the particular data from which the 
parameters of the model are estimated [8] instead of capturing the main 
mechanism the network is trying to describe. The most mathematical and 
practical aspects of NN’s have been widely explained in the literature [4, 5, 8]. 
     After building the models, an important aspect is the evaluation of their 
performance when faced with the new data belonging to the test data set. The 
most widely used statistical indicators of the goodness of fit for a model is the 
Pearson correlation coefficient R and its square R2, which represents the 
proportion of the observed variance explained by the model. However, several 
works [12–14] have shown the shortcomings and limitations of this indicator, 
though for comparison purposes are still used. Some proposals have been made 
for more meaningful statistical indicators [12–15] and, apart from the classical 
R2, in the last years the following indicators are being used widely [12–15]. 
 

1. The index of agreement d (1) varies between 0 and 1 and is a 
dimensionless measure of the degree to which a model’s predictions (Pi) 
are error free when compared with the observations (Oi).  
 

d = 1-[Σ|Pi-Oi|][Σ|Pi-Ō|+|Oi-Ō|]-1         (1) 
 
If the value of d is 1 indicates perfect agreement between the observed 

2. Fraction of two (FA2) which represents the proportion of the ratio 
between observed and predicted values that falls in the range 0.5-2. 

3. Total root mean squared error RMSE [12]. 
 
     For this study, historical hourly records of traffic, air pollution and 
meteorology corresponding to years 2000 and 2001 were available. The 
objective was to build short-term prognostic models for SO2, CO, NO2, NO and 
O3 in the area of Bilbao. The analysis was carried out for 6 locations in the area 
and predictions from 1 to 8 hours ahead. That made 216 NN’s which were 
selected following the next steps: 
 

1. For each of the 216 predictions, 100 NN’s were built using data of year 
2000. The 100 NN’s included MLP of 1 and 2 hidden layers, RBF’s, 
GRNN’s and also linear networks.  In general, a linear regression 
analysis can be understood as particular case of MLP with one hidden 
layer and a linear transfer function. 

2. The 5 networks with minimum error in the validation set were chosen. 
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and predicted observations while 0 connotes a complete disagreement. 



3. These 5 networks plus persistence of levels constituted the six candidate 
networks to be tested for each of the 216 predictions with data of year 
2001. 

4. The performance of the models for the predictions of the different 
pollutants was calculated after applying them to year 2001. The best 
model out of the six candidates was chosen under the criteria of 
simultaneously having the best values for the four statistical indicators 
(R2, d, FA2 and RMSE) at a 95% confidence level. 

3 Results 

For the prediction of SO2 levels up to 8 hours ahead, out of the 48 predictions in 
most cases (33), persistence of levels is either the best option or is not 
outperformed by any other model. In 13 cases, linear models are either as good 
as different neural networks or perform better. Only in two cases, the use of the 
more complicated MLPs are justified. Depending on the sensor, persistence of 
levels tend to be the best model for predictions up to K=4 hours ahead while for 
predictions from H+5 to H+8, linear models and/or different types of neural 
networks perform better.  
     In the case of the predictions of CO, at H+K with low values of K, persistence 
of levels and simple linear models are for most sensors, the best options. From 
H+5 to H+8 predictions tend to be obtained best using linear models and MLP or 
RBF’s. 
     For the predictions of NO2 in most cases (31), linear models are enough to 
launch forecasts. For the predictions up to 2 hours ahead persistence of levels 
tend not to be outperformed, while linear models are the most usual for the rest 
of predictions. More sophisticated models like MLP and RBF networks need to 
be built for a few predictions from K=4 to 8 hours ahead. 
     In the case of NO, persistence is the best model in four sensors for K=1 while 
for higher values of K in approximately half the predictions, linear models are 
enough. In the rest of the cases (18 out of 48) MLP, RBF or GRNN models have 
to be built. 
     Ozone predictions are obtained at 3 locations and only in 4 cases out of 24 -
for values of K below 2- persistence of levels is not outperformed by any other 
type of model. In 13 cases, linear models work better than any other and in 6 
cases as well as non-linear networks. Only in one case (K=7) it is necessary to 
build a RBF model. 
     For each prediction, the best model has been chosen under the criteria that its 
R2, d, FA2 and RMSE values at a 95% confidence level were simultaneously the 
best when compared with the rest of the models. For each pollutant, location and 
number of hours ahead, the best prediction has been obtained using different 
types of models. In figures number 1 and 2 it can be seen the maximum and 
minimum values of the index of agreement, d and R2 corresponding to those 
obtained with the best models to forecast ozone at the six locations of the area 
studied.  
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Figure 1: Maximum and minimum values of R2 obtained up to 8 hours ahead. 

 

Figure 2: Maximum and minimum values of d obtained up to 8 hours ahead. 
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     In the case of SO2 and CO, persistence of levels is quite often the best option, 
followed by linear models. However, in the predictions of NO2, NO and O3, 
linear models are usually enough and only in a few cases more sophisticated 
neural networks are needed. 
     In the time scale of this study, SO2 and CO do not suffer important chemical 
transformations since emitted until measured, while for NO2, NO and O3, the 
photochemical reactions that take place since precursors are emitted are crucial 
to explain the measured levels. Furthermore, some pollutants (CO, NO2, NO and 
O3) are related to traffic emissions while others are not (SO2). However, the 
performance of the models for the different pollutants, including persistence, is 
quite similar with a trend to a higher error the higher the value of K is.  
     Though certain trends in the type of model can be detected, the local 
conditions of the sensor seem to be the most important factor explaining why a 
certain type of model works best at a given location for a certain pollutant and 
value of K.  

4 Conclusions 

This work focuses on the prediction of hourly levels up to 8 hours ahead for five 
pollutants and six locations in the area of Bilbao. This represents the need to 
build 216 specific models to launch hourly forecasts of the forthcoming levels. 
To that end, historical records of the traffic, meteorological and air pollution 
networks corresponding to years 2000 and 2001 have been analyzed jointly and 
for each of the 216 predictions, 5 statistical models have been built. Their 
performance has also been compared with the simplest prediction, persistence of 
levels, according to four statistical indicators: R2, d, FA2 and RMSE. Depending 
on the pollutant, location and number of hours ahead the prediction is made, 
different types of models have been chosen. In the case of SO2 and CO, in a great 
number of cases persistence of levels outperform linear models and also those 
based on neural networks. Predictions of NO2, NO and O3 hourly levels require 
in most cases linear models and only in a few cases MLP, RBF or GRNN based 
models. However, despite the different architecture of the models and also the 
explanatory mechanisms describing the emissions, transport and chemical 
transformations of each pollutant, the performance of the chosen models –
including persistence – is very similar.  
     Therefore the chosen models for each case represent the maximum 
forecasting capability that can gain the network, regardless the type of model 
used for a given prediction.  
     Instead of this statistical approach, a second modeling strategies intended to 
describe every physical and chemical mechanism involved relating emissions 
and inmissions, have not been applied in the area, and comparison of results is 
not possible. However, in the last years, this second modeling strategy is being 
applied in urban areas at different time scales being their objective to describe 
future air quality scenarios rather than yield short-term predictions of a given 
pollutant. 
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     For the time scale of this study, in the period since SO2 and CO emissions 
take place until inmission levels are measured, these two pollutants do not 
experiment important chemical reactions. Therefore, persistence or linear models 
seem logical. In the case of NO2, NO and O3 complicated transport mechanisms 
and highly non-linear photochemical reactions relating traffic, meteorology and 
air pollution are known to be involved. 
     However, for these three pollutants and at the time scale of this study, in 
many cases simple linear models work as well as more complicated neural 
networks or slightly worse. This is something that has also been largely reported 
[16] and pointed out in previous works carried out in other urban areas. The 
explanation may be that the combination of the great number of highly non-
linear mechanisms associated to photochemical smog result in the linearization 
of the overall effect. 
     The air pollution network in the area of Bilbao was originally designed as a 
diagnosis tool to follow in real time the evolution of several pollutants and it also 
measured some meteorological parameters. The traffic network was also 
intended to follow the evolution of traffic flow in the area of Bilbao. Bringing 
together the information from these networks it is possible to build statistical 
models that can yield short-term forecasts of air pollution levels. The 
performance of the models represent the boundaries in the prognostic capabilities 
of the network for the different pollutants measured in the area. Most air 
pollution networks are originally designed for control purposes and many times, 
meterological variables are also measured. If traffic data are measured jointly 
along with air pollution and meteorological values, it is possible to expand the 
capabilities of the original air pollution network if an integrated approach is 
done, shifting towards a joint management of the existing networks. 
     Though this group of models have been built for Bilbao, the same 
methodology can be applied to urban environments if like in this case, air 
pollution, meteorological and traffic data are available simultaneously. The 
models obtained can be quite easily built, run on a simple PC and can be 
incorporated into the daily network managing activities. The model needs to be 
updated every year and a good training level is required for the staff in charge of 
the air pollution network(s). Including in the network management activities an 
intensive and comprehensive program of data processing can expand the 
capabilities of a diagnosis air pollution network and provide the same with a 
range of prognosis capabilities. Many cities in the world are currently making 
serious efforts towards sustainability. The present approach can be incorporated 
into the overall management activities and strategies (like Agenda 21) towards a 
cleaner air and a better environment in many urban areas. Being air pollution in 
cities nowadays an issue of major concern, this approach can constitute the core 
of an alert system in real time. Its nature is modular and information from more 
sources of pollutants can be easily incorporated in the future.  

Acknowledgements 

This work is part of a research project financially supported by the University of 
the Basque Country UPV-EHU (Spain) under contract n# 1/UPV 00149.345-E-

 © 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 86,
 www.witpress.com, ISSN 1743-3541 (on-line) 

Air Pollution XIV  29



15398/2003. The author wishes to thank the Environmental Department of the 
Basque Government and the Traffic Department of Bilbao Municipality for 

References 

[1] Ibarra-Berastegi G.; Elias, A.; Agirre, E.; Uria, J. Long-term changes in 
ozone and traffic in Bilbao; Atmos. Environ. 2001, 35, 5581-5592. 

[2] Ibarra-Berastegi G.; Elias, A.; Agirre, E.; Uria, J. Traffic congestion and 
ozone precursor emissions in Bilbao (Spain); Environ. Sci. & Pollut. Res. 
2003, 10, 361-367. 

[3] Hornik, K.; Stinchcombe, M.; White, M. Multilayer feedforward networks 
are universal approximators; Neural networks, 1989, 2, 359-366. 

[4] Masters, T. Practical Neural Network Recipes in C++; Academic Press, 
1993.  

[5] Bishop, C. Neural Networks for pattern recognition; Oxford University 
Press, 1995.  

[6] Gardner, M.W.; Dorling, S.R. Statistical surface ozone models: an 
improved methodology to account for non-linear behaviour; Atmos. 
Environ. 2000, 34, 21-34. 

[7] Haykin, S. Neural Networks: A comprehensive foundation; New York. 
McMillan Publishing, 1994. 

[8] Statistica 7.0. User’s manual. http://www.statsoft.com/ 2005. 
[9] Ordieres, J.B.; Vergara, E.P.; Capuz, R.S.; Salzar, R.E.; Neural network 

prediction model for fine particulate matter PM2.5 on the US-Mexico 
border in El Paso (Texas) and Ciudad Juarez (Chihuahua); Environ. 
Model. & Softw. 2005, 20, 547-559. 

[10] Speckt, D.F. A Generalized Regression Neural Network. IEEE 
Transactions on Neural Networks. 1991, 2 (6), 568-576. 

[11] Patterson, D. Artificial Neural Networks. Singapore. Prentice Hall, 1996. 
[12] Wilmott, C.J. On the validation of models; Phys. Geogr. 1981, 2, 184-194. 
[13] Wilmott, C.J. Some comments on the evaluation of model performance; 

Bull. Am. Meteo. Soc. 1982, 63, 11, 1309-1313. 
[14] Wilmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J; Klink, K.M.; 

Legates, D.R.; O’Donnell, J.; Rowe, M.C. Statistics for the evaluation and 
comparison of models; J. Geo. Res. 1985, 90, 8995-9005. 

[15] Hanna, S.R.; Strimaitis, D.G.; Chang, J.C. User’s guide for software for 
evaluating hazardous gas dispersion models. 1991. American Petroleum 
Institute. 1220 L. Street, Northwest. Washington. D.C. 20005. 

[16] Comrie, A. Comparing neural networks and regression models for ozone 
forecasting; J Air & Waste Manage Assoc. 1997, 47, 653-663. 

[17] Ibarra-Berastegi, G; Madariaga, I; Agirre, E; Uria, J. Short-term real time 
forecasting of hourly ozone, NO2 and NO levels by means of multiple 
linear regression modelling; Environ. Sci. & Pollut. Res. 2001, 8, 250. 

[18] Ibarra-Berastegi, G; Madariaga, I; Agirre, E; Uria, J. Short-term 
forecasting of ozone and NO2 levels using traffic data in Bilbao (Spain). 
Urban Transport IX. pp. 235-242. WIT Press. Southampton. UK. 2003. 

 © 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 86,
 www.witpress.com, ISSN 1743-3541 (on-line) 

30  Air Pollution XIV

providing with data for this study. 



[19] Ibarra-Berastegi, G; Madariaga, I. Identification of joint targets for traffic 
and ozone in Bilbao (Spain)). Air Pollution XII. pp. 519-528. WIT Press. 
Southampton. UK. 2004. 

[20] Ibarra-Berastegi, G; Madariaga, I. Impact assessment of Bilbao’s metro. 
Advances In City Transport: Case Studies pp. 31-42. WIT Press. 
Southampton. UK. 2005. 

 © 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 86,
 www.witpress.com, ISSN 1743-3541 (on-line) 

Air Pollution XIV  31




