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ABSTRACT 
Trajectories of a buoyant spherical solid particle in a linear shear flow were investigated at low 
Reynolds numbers. A two-dimensional CFD analysis was performed to simulate the solid-fluid flow. 
Our numerical model uses the discrete phase element method (DPM) to simulate the fluid domain and 
particle (solid phase) motion. The reliability of the computational results was evaluated for the particle 
trajectory acquired at the University of New Mexico’s stratified linear shear flow generator. The 
agreement between the numerical results with the experimental data is quantified. 
Keywords:  particle migration, multiphase flows, linear shear flows, CFD. 

1  INTRODUCTION 
A fluid-solid flow is an interdisciplinary research area with many technological, commercial 
and medical applications. Suspensions of macro- to nano-scale particles in viscous fluid 
flows occur in transport of sediments in rivers and estuaries, to the use of nano-fluids as  
high-performance coolants. Other important applications are contaminant transport and 
exposure assessment and slurries flows, as well as secondary oil recovery by hydraulic 
fracturing. The behavior of solid particles in a viscous fluid is one of the oldest classical 
problems in this field. One of the earliest investigations of the motion of small particles in a 
viscous fluid at low Reynolds number (Re) was performed by Stokes in 1851 [1]. More 
recently, Ingber [2] investigated a variety of particle interactions including particle/particle, 
wall/particle and particle migration in nonlinear shear fields. A semi-analytical solution was 
developed for the motion of two spherical particles suspended in an unbounded arbitrary 
shear flow [3]. Comparisons of computational prediction of single and double particle 
trajectories using the discrete phase model (DPM) against the semi-analytical solution were 
performed [4]–[6]. In addition to DPM, several particle methods including smoothed particle 
hydrodynamics, smoothed profile hydrodynamics and the modified version of the front 
tracking method have been utilized to investigate the migration of macro- to micro-scale 
droplets, bubbles and solid particles in fluid flows [7]–[11]. In these numerical approaches, 
accurate evaluation of the discontinuities between the primary and the secondary phases can 
be challenging. 
     The multiphase nature of the flow introduces several problems that are absent in the 
single-phase formulation. First, from the computational point of view, it greatly adds to  
the modeling complexity, because flow features must be resolved for a greater range of scales 
to account for the fluid-particle interaction [2]. The situation when two particles come into 
contact inside the fluid is especially challenging, because for two idealized spherical 
particles, a point of contact is a geometric singularity that can produce undesirable  
mesh artifacts.  
     The same problem (particles in contact or in near-contact) also has physical implications 
that may still require elucidation. Particle interaction dominated by non-hydrodynamic forces 
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will lead to irreversibility of such interactions even at very low Reynolds numbers, where the 
hydrodynamics would be nominally reversible (Stokesian). The extent of this irreversibility 
was shown to be directly related to the particle surface properties on the microscale (e.g., 
average roughness) [12]. Two interacting particles in a nominally reversible shear flow do 
not return to their original positions. For three interacting particles, it was shown that their 
behavior becomes chaotic [13], [14]. Irreversibility in individual particle interactions can also 
be related to the behaviors of large group of particles, such as changes in the particle 
distribution profiles in sheared flows [15]. Finally, even a single particle in fluid flow can 
manifest interesting and sometimes perplexing behaviours, such as thermophoresis [16].  
     In this article, the new development of our linear shear flow in the Couette flow  
apparatus is presented. The modified arrangement makes it possible to study the single and  
multi-particles migration in parallel and counter Couette flows. Compared to the previous 
facilities, the new device also provides higher accuracy for setting the boundary conditions 
for making fluid and particle measurements. 

2  EXPERIMENTAL AND COMPUTATIONAL PROCEDURE 
Experiments are conducted to determine the behavior of a single spherical particle suspended 
in linear shear flow. Here the particle was comprised of polymethyl-metacrylate (PMMA). It 
was nominally spherical, with a diameter of 6.35 mm, and was suspended in a tank  
between two gravity-stratified layers of fluids with approximately equal viscosity but with  
different densities.  
     Fig. 1 shows the experimental apparatus including the tank and the compumotor which is 
a computer-controlled stepper motor. The compumotor was used to displace the belts.  
 

 

Figure 1:  Experimental apparatus. 
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     The particle was placed between two belts as shown in the top picture in Fig. 2. The 
schematic representation of the experiment showing the boundary conditions of the physical 
domain and the suspended particle between the two layers is also shown in Fig. 2. After the 
particle is settled in the desired position, the side belts are moved at a constant velocity to 
provide the fluid domain with a shear field in the Couette flow configuration.  
     As mentioned before, a computer-controlled stepper motor is used to provide the moving 
boundary conditions via the moving belts. The rectangular tank is filled with a stratified 
viscous fluid which is a water solution of ZnCl2 and Triton X100. The material properties of 
the primary phase – upper and lower layer – are evaluated and are shown in Table 1. The 
same stratified fluid components were also used to study the migration of pairs of nearly 
spherical solid particles suspended in a shear flow inside a Couette cell for the Reynolds 
number of approximately 0.1 [12], [17]. 
     To model and simulate the fluid domain including the solid particle phase, the standard 
discrete phase model is used [18]. The Lagrangian DPM is based on a translational force 
balance that is formulated for an individual particle. In the DPM, typically the particle is 
subject to gravity, drag, pressure, Magnus, virtual mass and Saffman forces. 
 

   
 
             

Figure 2:    Top left: top view of the single particle and the upper moving belt in x-y 
coordinates (schematic and photograph); bottom right: oblique view of a 
schematic showing the fluid and the solid particle in x-y-z coordinates. 

Table 1:  Stratified fluid properties. 

  𝜌 ሺ𝑘𝑔 𝑚ଷ⁄ ሻ  𝜈 ሺ𝑐𝑚ଶ 𝑠𝑒𝑐⁄ ሻ 

Upper layer fluid 1110 146.2 

Lower layer fluid 1280 146.2 

 
     In DPM, the influence of particle is represented as a source term in the Navier-Stokes 
equations. The continuous phase equations are solved in conjunction with the tracking of 
particles. For dilute systems, the effect of particles on the flow is negligible and the source 
term is set to zero. The continuous phase eqns are: 
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     The motion of every individual particle with mass 𝑚௣ and velocity 𝑢௣ in the system is 
evaluated using Newton’s second law: 

 𝑚௣
ௗ௨೛

ௗ௧
ൌ  𝐹ௗ௥௔௚ ൅ 𝐹௩௜௥௧௨௔௟ ௠௔௦௦ ൅ 𝐹௣௥௘௦௦௨௥௘ ൅ 𝐹௚௥௔௩௜௧௬ ൅ 𝐹௟௜௙௧. (3) 

     The force terms on the right-hand side of eqn (3) are respectively drag, pressure, virtual 
mass, gravity, and lift. 

3  RESULTS AND DISCUSSION 
As mentioned earlier, the computational domain reflects the region in our experimental setup 
which is monitored and imaged by using a camera (top view). The primary phase velocity 
was found by the exact solution for the Couette flow domain. Some of the terms on the  
RHS of eqn (3) including the gravity, lift and virtual mass forces are negligible in this  
two-dimensional analysis. Eqn (3) can be rewritten as: 

 
ௗ௨೛

ௗ௧
ൌ 𝐶ௗ௥௔௚൫𝑢௙ െ 𝑢௣൯ ൅ 𝐶௩௜௥௧௨௔௟ ௠௔௦௦ ൅ 𝐶௣௥௘௦௦௨௥௘.  (4) 

     Here 𝐶ௗ௥௔௚ሺ𝑢௙ െ 𝑢௣ሻ, 𝐶௣௥௘௦௦௨௥௘and 𝐶௩௜௥௧௨௔௟ ௠௔௦௦ represent the drag force, pressure 
gradient force and the virtual mass force respectively – all terms per unit mass. 𝐶ௗ௥௔௚ is  
given as:  

 𝐶ௗ௥௔௚ ൌ
ଵ଼ఓ

ఘ೛ௗ೛
మ
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ଶସ
, (5) 

where 𝑢௣ is the solid particle velocity, 𝐶ௗ is the drag coefficient, 𝜌௣ and 𝑑௣ are the density 
and diameter of the spherical particle. The Reynolds number is calculated based on the 
relative velocity of the primary (fluid) and secondary phase (solid) as: 

 𝑅𝑒 ൌ
ఘௗ೛|௨೑ି௨೛|

ఓ
, (6) 

where 𝜌 is the density of the primary phase. 
     The second term in eqn (4), 𝐶௩௜௥௧௨௔௟ ௠௔௦௦, can be written as: 
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     𝐶௩௜௥௧௨௔௟ ௠௔௦௦ represents the force per unit mass required to accelerate the fluid around the 
particle. The pressure gradient force per unit mass (𝐶௣௥௘௦௦௨௥௘ሻ is defined as:  

 𝐶௣௥௘௦௦௨௥௘ ൌ ൬
ఘ

ఘ೛
൰ 𝑢௣

డ௨

డ௫
. (8) 

     The pressure gradient term can be neglected as the acceleration of the fluid is negligibly 
small with respect to the nature of this case. Stated differently, the change of fluid velocity 
in the 𝑥 direction is almost zero in this steady state Couette flow domain.  
     Note that there can be another external force term in eqn (4) to represent the lift force. 
However, this term can also be neglected due to force balance in the 𝑥 direction while the net 
force in the 𝑦 direction balances with gravity due to density differences. 
     The particle velocity and displacement are calculated by integrating the two-dimensional 
governing equation of motion. These simulations are performed with the second order 
accuracy. In all numerical studies, 𝑑𝑡 ൏  10ି଺ sec and 𝑑𝑥 ൏  10ିସ 𝑚. 
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     In Fig. 3, the left photograph shows the top view of the particle suspended in the stratified 
flow in the experimental setup. The middle image is from the two-dimensional CFD of the 
discretized fluid domain with the solid particle which reflects the experimental particle 
location in the fluid. The right image shows the velocity contour plot of the fluid in the 
domain with the moving boundary condition at the bottom. The top boundary condition is 
zero velocity on the mid-axis due to the symmetry of the domain. The moving bottom 
boundary condition reflects the moving belt in the experimental setup. Since the whole 
domain in the experimental set up consists of two belts which move in opposite directions 
with the same velocity, just half of the domain is considered in the simulation study.  
     Fig. 4 compares the simulation results against the experimental data. The experiment is 
repeated at least 5 times for each Reynolds number and the mean values are presented in this 
figure. One of the key elements in both experimental and computational analysis is the 
moving belt speeds that control the exerted shear rate. The moving belt speeds provides  
the boundary condition for the analysis in the computational domain. A mean velocity of the 
belt is measured and is used as the boundary condition in the numerical simulations. Fig. 4 
shows that the simulation results are in good agreement with the experimental data.  
 

 

Figure 3:    Left: particle located in the experimental setup (obtained from the experiment); 
Middle: particle located in the meshed primary phase; Right: fluid phase under 
the moving boundary condition from bottom. 

 

Figure 4:    Computational and experimental particle velocity for values of the Reynolds 
number that were investigated. 
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Figure 5:    Comparison of the simulated relative dimensionless velocity with the 
experimental data for the range of Reynolds numbers under investigation. 

     During the experiments, we took measures to minimize the uncertainty in the positions of 
the moving boundaries. The compumotor drive to the pulleys moving the belts was 
implemented using a bicycle chain, and the belts and pulleys used a spring-loaded tightening 
arrangement, Nevertheless, occasional belt slippage did occur. Such slippage incidents are 
neglected in the evaluation of the mean values of the mean belt speed used in the simulation 
results shown in Fig. 4. To consider the effect of the sudden belt slippage during the 
experiments, the dimensionless relative velocity of the particle was defined as: 

  ൌ
௨್೐೗೟ି ௨೛

௨್೐೗೟
. (9) 

     Here 𝑢௕௘௟௧ is the average belt velocity in the experimental setup. The uncertainties due to 
the belt slippage are considered in  to provide a more realistic comparison between the 
computational results and the experimental data. The simulated dimensionless relative 
particle velocities, , are compared with the experimental data in Fig. 5.  
     The value of  converges to about 0.4, and there is a good agreement between the 
simulation results and experimental data. Careful examination of Fig. 5 indicates that  
the simulated particle velocity shows a slight increase with the Reynolds number. 
     The uncertainties in both experimental and computational are also studied and quantified. 
The simulation results are sensitive to the initial location of the particle that was measured 
by the image processing that depends on the resolution of the images. This could cause an 
error of about 2% in the relative velocity which is presented in Fig. 5 on the simulation results. 
A variable uncertainty is observed in the experimental measurement due to the belt slippage. 
As the Reynolds number increases, the error bound of the experimental data for relative 
velocity increases. This can be attributed to several reasons including an increase in the belt 
slipping which contributes to , increase in the contribution of rotation of particles, and their 
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surface roughness. In addition, in the experimental study, the stratified primary phase consists 
of layers of fluid components with different densities, while in the simulation an average 
value of density of the fluid layers is used. Nevertheless, Fig. 5 shows that the simulation 
results are within the error bound where the error bound is mostly due to the uncertainties of 
the experimental data. 

4  CONCLUSIONS 
A combined computational-experimental study on the motion of a spherical particle in a  
low-Reynolds-number stratified shear flow was performed. An acceptable agreement was 
observed between the numerical results and the experimental data. Better agreement  
was observed at lower Reynolds numbers. At higher Reynolds numbers, the difference 
between the computational results and experimental data increases slightly which is more 
distinguished in  since it has a direct contribution from the belt slippage. One of the main 
sources for the difference may be attributed to the stratified nature of the fluid in the 
experimental apparatus, while the average fluid density was used in the simulation. This 
issue, however, can be addressed in three-dimensional fluid flow analysis.  
     What are the implications of the findings? Usually comparison between experiment and 
numerics is conducted to validate the numerical modeling. However, this is not universally 
the case: for example, numerical modeling can also reveal deficiencies in experimental 
diagnostics [19]. In our case, the agreement between experiment and numerics both inspires 
confidence in the code and confirms that the uncertainties in the experimental setup are 
modest and the mechanisms producing them (e.g., belt slippage) do not need to be explicitly 
accounted for during modeling to result in good agreement. This suggests that the same 
experimental and numerical approach can be applied to future work: two-particle [12] and 
three-particle [13] interactions earlier studied in a cylindrical Couette cell, as well as 
interactions between non-spherical particles, both in Couette and Pouseuille flows.  
Two-particle interactions in periodic Couette flows in cylindrical geometry were shown to 
be irreversible [12], while three-particle [13], [14] and larger particle group [20] interactions 
can be interpreted as chaotic. Quantification of irreversibility/chaos in linear 
Couette/Pouseuille flow and elucidation of the underlying physics remain for future study.  
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