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ABSTRACT 
The essential limiting factor of the power transmission line transfer capabilities is the maximal allowed 
temperature of the conductor that should not be exceeded to avoid excessive sags. A commonly used 
conservative approach is to limit transfer capability to the worst case scenarios, i.e. hot, sunny, windless 
days. Of course, system operators strive to raise the limit with more sophisticated models that take into 
account actual weather conditions or even weather forecasts. As a consequence, there has been 
substantial research done on Dynamic Thermal Rating (DTR) models in the last few decades. Based on 
accumulated knowledge the leading standards in the field published guidelines for thermal rating for 
operative use. However, the proposed models rely only on empirical relations for determination of the 
temperature gradient on the surface of the conductor that dictates the heat flux due to the advection. 
This heat flux is the most intense cooling mechanism in play, and also the most complex to model. In 
this paper, we extend the discussion about advective cooling with a direct simulation of temperature 
and velocity fields near the conductor with the focus on the natural convection regime. The introduced 
model considers joule heat generation and heat transport within the power line and its vicinity, fluid 
flow driven by buoyancy force, solar heating, and radiation. The solution procedure uses RBF-FD 
numerical method combined with Poisson disk sampling nodal positioning algorithm. The results of 
the simulation are presented in terms of temperature and velocity magnitude contour plots, convergence 
analyses, and comparison of convective heat losses of simulated results to IEC, IEEE and CIGRE 
standards. 
Keywords:  overhead power line, DTR, meshless, natural convection. 

1  INTRODUCTION 
The increasing demands for electrical power pressure the transmission system operators to 
improve transmission capabilities. As a result, some existing lines might become overloaded, 
especially in summer time, causing bottlenecks that can lead to blackouts [1]. 
     The essential limiting factor of the power transmission line transfer capabilities is the 
maximal allowed temperature of the conductor, e.g. 80°C in the Slovenian power system, 
which should not be exceeded to avoid excessive sags. A commonly used conservative 
approach is to limit transfer capability to the worst case scenarios, i.e. hot, sunny, windless 
days. Of course, system operators strive to raise the limit with more sophisticated models that 
take into account actual weather conditions or even weather forecasts. 
     As a consequence, a substantial research has been done on Dynamic Thermal Rating 
(DTR) models in the last few decades [2]–[4] that consider heat generation within the 
conductor and heat exchange with surroundings due to various mechanisms, namely 
radiation, solar heating, rain impinging and the most important as well as the most complex 
to model: convective heat transport. The most widely accepted models are collected in 
leading CIGRE [5], IEEE [6] and IEC [7] standards that offer comprehensive overview of 
research done in the field. 
     The CIGRE, IEEE and IEC model the convective cooling by means of empirical relations 
that relate Grashof, Prandtl and Nusselt numbers, i.e. state relation between the power of 
cooling in dependence on the material properties and the temperature difference between the 
cylinder and the ambient. The most accepted is relation provided by Morgan [8], however  
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Figure 1:  Scheme of the problem. 

there are also other similar relations as Churchill and Bernstein relation [9], McAdams 
relation [10], Zukauskas and Žiugžda relation [11], etc. 
     In this paper we present a physical model of heat transfer from power line that does not 
rely solely on the data provided by measurements but tries to predict the thermal state from 
thermo-physical properties of air, aluminum, and steel and geometry of the power line. The 
introduced model is solved numerically using a local meshless RBF-FD [12] based on 
weighted least squares approximation [13], [14]. In this paper only natural convection regime 
is discussed. 
     The rest of the paper is organized as follows, in Section 2, Physical model, we discuss the 
main phenomena in the model, in Section 3 the solution procedure RBF-FD method for 
simulation of the physical model is presented, and in Section 4, Results, we discuss the 
computed results. 

2  PHYSICAL MODEL 
First, a physical model for thermal rating of overhead power line is discussed. The domain 
of the problem is a cross-section of a power line that is further separated into a steel core and 
aluminum conductor, and surrounding air (Fig. 1). Within the steel core only heat conduction 
takes place 
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while heat generation due to Joule losses is also present in the aluminum conductor 
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where indices st, al denote steel and aluminum domain, pc  specific heat capacity,   thermal 

conductivity,  density, and jq  heat source due to the Joule losses, which is modeled as 
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with temperature dependent conductivity  R T  introduced as [5] 
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where R20 stands for resistivity at 20°C, 1
20 4.5e-3 C   for the thermal resistance 

coefficient, and alS  for conductor area. 
     The heat transport in surrounding air is driven primarily by convection and therefore 
momentum transport has to be considered, which is modelled with the Navier–Stokes 
equation and mass continuity further coupled with the heat transfer through the Boussinesq 
approximation 
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with   ref, , , , , , , , , ,p Tu v P T c T   v g  and b  standing for velocity, pressure, 

temperature, thermal conductivity, specific heat, gravitational acceleration, air density, the 
coefficient of thermal expansion, reference temperature for Boussinesq approximation, 
viscosity and body force, respectively. Thermal conductivity and viscosity of air are further 
modelled as [5] 
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     On boundaries between steel core, aluminum conductor and surrounding air, conservation 
has to hold yielding following boundary conditions 
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where 1r  in 2r  denote steel core and line radius, n outside unit normal vector to the domain 

boundary, and rq  heat sink due to the radiation, modelled as 

 4 4 ,r B s s aq T T                                                    (15) 
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where 2 45,67 [W/ m K ]B  and s  stand for the Stefan–Boltzmann constant and 

emissivity, respectively. sT  and aT  stand for skin temperature ( 2( )al
sT T r ) and ambient 

temperature. 
     At the top boundary the symmetry is assumed 
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     Other boundaries are assumed to be far enough that air is still at ambient temperature. 

3  SOLUTION PROCEDURE 
The solution procedure is divided in two time loops, namely the air and the power line loop. 
The reason for this lies in extremely different dynamics of involved phenomena. For 
illustration, if skin temperature of line suddenly increases for 40°, the system (5)–(8) will 
reach steady state in few seconds. On the other hand, if electric current through the conductor 
suddenly increases for 800 A, the power line will reach thermal equilibrium only in a few 
hours. This can be quickly seen from values of thermo-physical properties introduced in next 
section. Besides, the system (1)–(4) can be solved implicitly with a relatively big time step, 
i.e. in order of 10 s, while non-linearities of the system (5)–(8) requires much finer temporal 
stepping, i.e. in order of 1 ms. Therefore, first system (1)–(4) is solved implicitly with time 
step linet  using values of air temperature from previous time step, followed by internal 

iteration, where system (5)–(8) is solved explicitly with airt . 

     Each internal time step begins with computing the intermediate velocity ( iterv ) from eqn 
(6) without pressure term. Since the intermediate velocity does not satisfy eqn (5), a Poisson 
pressure correction equation 
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boundary condition. The pressure Poisson equation is, at given boundary conditions, defined 
only up to a constant and to avoid instabilities a unique solution is enforced with an additional 
condition, also referred to as a regularization 
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

                                                           (20) 

     Once the pressure correction is known, a velocity is corrected accordingly 
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     Finally, the eqn (7) is solved, again with Euler’s method. The internal iteration takes place 
until steady state is achieved. 
     Spatial discretization needed to compute involved partial differential operators is based 
on a local approximation of a considered field over the overlapping local support domains, 
i.e. in each node an approximation over a small local sub-set of neighboring n nodes among 
all nodes N 
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with  , , , ,x ym p pα b p  standing for the number of basis functions, approximation 

coefficients, basis functions and the position vector, respectively, is used. In this paper we 
use a higher number of support nodes than the number of basis functions, i.e. n m , and 
therefore weighted least squares (WLS) approximation is used to solve the over-determined 
problem, i.e. a norm 
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is minimized, where W  is a diagonal matrix with elements  jj jW W p  with 
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where   stands for weight parameter, 0p  for the center of support domain and minp  for the 

distance to the first support domain node. The solution can be written in matrix form as 
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where  0.5 
W B  stand for a Moore–Penrose pseudo inverse. By explicit expression of α  into 

 an equation 
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is obtained, where χ  stand for the shape function. Now, we can apply partial differential 

operator ( L ), on the trial function, 

    , û LL p χ p u                                                   (27) 

and obtain an approximation for desired operator at point p. In described model, we deal with 
Navier–Stokes and Heat equations and therefore only shape functions for Laplace operator 
and first derivatives are needed, which are pre-computed and stored. 

4  RESULTS 
The natural convection from 490-AL1/64-ST1A power line is numerically investigated in 
this section. This power line with radius 1.33 cm is made of material with following 
properties 32703kg/mal  , 37780 kg/mst  , 897 J/(kgK)al

pc   481J/(kgK)al
pc  . The 
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thermal conductivity of the power line is estimated to 2 W/ mKal al    as proposed in 

[5], [15]. The air is modelled with 31.29 kg/m  , 1005 J/kgKpc  and 0.00367  . In the 

numerical simulation the 490-AL1/64-ST1A is positioned in the centre of in 10 x 10 cm 
square domain. 
     We start analysis with illustration of phenomena by means of contour plots of temperature 
field and velocity magnitude near power line (Fig. 2). 
     First set of more quantitative analysis is focused on internal iteration, i.e. on computation 
of thermo-fluid problem near power line at constant skin temperature. In Fig. 3 temperature 
profiles for different asT T T    are presented, where we can see that the boundary layer is 

in order of a few centimeters, and as expected it narrows with increasing difference between 
skin and ambient temperature. From Fig. 4 it can be concluded that the presented RBF-FD 
solution is convergent and that, as assumed in solution procedure section, the steady state is 
achieved within few seconds for all reasonable cases. 
 

    

Figure 2:    Temperature (left) and velocity magnitude (right) contour plots for cooling of 
overhead power line. 

 

Figure 3:  Temperature profile ( , y 0)T x   at different asT T T   . 
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Figure 4:  Convergence plot (left) and time development for different asT T T   . 

     In the left plot of Fig. 5 a comparison of RBF-FD simulation, CIGRE, IEEE, and IEC 
models in terms of convective cooling as a function of a ST T T    is presented. It can be 

clearly seen that IEC completely fails at prediction, while CIGRE, IEEE and RBF-FD 
simulation agree relatively well. In the right plot of Fig. 5 a full simulation is presented. Two 
different runs are presented in one figure. In each run electric current two times suddenly 
increases and then suddenly drops to zero. This way we cover four heating simulations and 
two cooling simulations. A comparison of RBF-FD simulation CIGRE model gives relatively 
good agreement. 
 

    

Figure 5:    Power of convective cooling with respect to the difference between the skin 
temperature and ambient temperature ( a ST T T   ) (left) and skin temperature 

development (right). 
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5  CONCLUSIONS 
This paper introduces relatively simple physical model describing the natural convection 
from overhead power line that takes into account heat transport and generation within the 
power line, radiation on the line skin, and thermo-fluid transport in the surrounding air. The 
presented physical model is numerically solved by RBF-FD meshless numerical method and 
it is demonstrated that simulated cooling by natural convection agrees well with the results 
provided by CIGRE and IEEE standards. In future work we want to further analyze the 
phenomena by simulating natural convection from different power lines and to include also 
forced convection in the analysis. 
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