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ABSTRACT 
For many years, a debate has occurred whether radial basis functions having compact support (CS) or 
global support (GS) is best for engineering and scientific applications. CS RBFs converge as O(h(k+1)), 
h is the fill distance, and its systems of equations have many zeros. In contrast, GS RBFs converge as 
O((c/h)),  <1, c is the GS-RBF shape parameter. Previously, the barrier to exploiting the exponential 
convergence rate of GS-RBFs has been the ill-conditioning problem that is due to computer chip 
restrictions on the relatively large machine epsilon. Although computer chips with arbitrary precision 
are very rare presently, extended precision software has allowed the exploitation of the exponential 
convergence rates of GS-RBFs. When attempting modeling of higher dimension practical problems, 
previous methods such as domain decomposition, global optimization, pre-conditioning will need to be 
blended even on massively parallel computers. 
Keywords: radial basis functions, compact support, global support, polynomial convergence, 
exponential convergence, multi-precision arithmetic. 

1  INTRODUCTION 
Kansa [1], [2] presented a meshless radial basis function (RBF) to solve partial differential 
equations (PDEs). There are two approaches to solve partial differential and integral 
equations with meshless RBF methods: 1. “Compactly supported” RBFs (CS-RBFs); 2. 
“Globally supported” (GS-RBFs). The convergence rate for interpolation is (c/h), where  <1 
[3]–[5]. The ratio, c/h, increases the rate of convergence by decreasing h, the average fill 
distance between pairs of points (h-refinement) or increasing the average value of the shape 
parameter, c, (c-refinement). The basic question is for a given application is whether h-
refinement or c-refinement is more cost effective to achieve the target accuracy with the least 
computational effort. The answer to this question is not definitive but depends upon the 
nature of the application and the available resources. 
     In general, as system of equations becomes larger, the higher is the probability that 
rounding-errors will severely contaminate the solution. A measure of this severity is the 
condition number, (A), of a system of equations relative to the inverse machine epsilon, 
1/M. Whenever (A) > 1/M the solution is worthless. While it is impossible to construct an 
ideal Platonic computer with infinite precision, infinite memory capacity that operates 
infinitely fast, there are some procedures that can be adopted to control the damage caused 
by the accumulation of round-off errors on a finite precision computer. Increasing the number 
of digits of precision requires both sacrificing memory and increasing the processing time 
per unit operation. This sacrifice is worthwhile if the total processing time to achieve target 
accuracy is smaller than the total processing time with single or double precision. 

2  TREATING ILL-CONDITING 
More or less standard methods have been used to treat either CS-RBF or GS-RBF systems 
such are regularization in which a small positive value is added to the diagonal elements 
(Tikhonov [6], Tikhonov and Arsenin [7], Tikhonov et al. [8]). Also related, is the truncated 
singular value decomposition (SVD) m0ethod in which the singular values below a certain 
threshold are neglected, and a modified set of linear equations is used to find the expansion 
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coefficients. As successively more small singular values are deleted. The further does the 
modified matrix deviate from the original matrix or set of linear or linear set of equations. 
     Holobodrodko of the Advanpix LLC [9] consider the eigenvalues of a 150x150 symmetric 
Grcar matrix [10] whose condition number is 3.61. Obviously, a very low condition 
symmetric matrix ought to have very accurate eigenvalues; and it is obvious that the 
eigenvalues of both the Grcar matrix and its transpose ought to be identical. However, the 
Grcar matrix whose condition number is 3.61, on a double precision machine, produces 
incorrect, unequal eigenvalues. Only when the extended precision software package is used 
do the eigenvalues in a quadruple precision calculation become identical. As a cautionary 
note, ideal Platonic arithmetic and mathematics does exist on real computers; rather, fuzzy 
arithmetic and mathematics is perhaps more appropriate, with the fuzziness dependent upon 
the available precision on the computer. 
     The reproducing kernel based Gaussian method expands a Gaussian RBF as an 
eigenfunction of products of the Gaussian exponentials in n, truncated to a finite number of 
terms, M [11], [12]. The kernel expansion is still ill-conditioned, so a combination of a 
truncated SVD and the quotient residual (QR) methods are used to obtain a new set of basis 
functions. The change of that is much better conditioned for h-refinement. 
     Domain decomposition has been successfully to both CS-RBF and GS-RBF methods for 
PDEs. Domain decomposition can use either the overlapping or non-overlapping methods 
[13]–[19]. Assume the problem is continuous, and the computational domain is arbitrarily 
decomposed as a union of smaller subdomains containing an equal number of data centers 
(approximately). Just as with finite element methods, the larger the number of centers within 
a subdomain, the larger will the condition number be, either with CS-RBFs or GS-RBFs. The 
IE or PDE in each subdomain has its “boundary” and interior conditions. In each subdomain, 
the set of equations is solved on separate independent processors in parallel. Then the 
solutions in each subdomain are iteratively blended to enforce continuity of the function and 
its normal and tangential derivatives. Typically, only 2–3 iterations are required to obtain 
satisfactory blending convergence. However, the parallelism is somewhat different if 
compact or global support is used; this will be discussed later. 
     If the problem being solved is fairly homogeneous spatially, then increasing the shape 
parameters or c-refinement while increasing the arithmetic precision is vastly more efficient 
since the total number of data centers can be reduced by many orders of magnitude [20]. 
However, some problems may have so much fine scale structure that h-refinement, rather 
than c-refinement, is required and slower converging compactly supported RBF methods 
may be required for a given available computer. Common sense is required regarding how to 
approach a given problem using the available resources. 
     Very promising is the development of global optimization methods for solving systems 
of equations [21]–[28]. This is a very broad field of research and development that has the 
potential to solve large systems of both linear and nonlinear equations without the need for 
LU methods that exacerbates ill-conditioning. Global optimization can be either search 
procedures, stochastic procedures, or a hybrid mixture of both. 

3  RECOMMENDED STRATEGIES 
It is recommended here that a hybrid approach be used such as: matrix scaling, iterative 
refinement, pre-conditioning, domain decomposition, global optimization, and extended 
arithmetic precision. Higham [29] discussed the importance of multiple precision in the 
practical world, and specifically praised the work of Holobodroko for the development of the 
multi-precision software package [9]. 
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     In addition, the curse of dimensionality is a serious impediment to h-refinement because 
of memory storage issues even on the most recent massively parallel computers. Plasma 
physics is minimally a six-dimensional problem. Discrediting at 1,000 points/dimension 
requires a storage capacity of 10¹⁸ for just the data centers alone. 
     A hardware computer chip remedy for extended precision beyond 64 bits/word is most 
preferable. However, the consumer gadget market does not require much precision, unlike 
scientific computing. For scientific applications, only software methods are the only current 
method to obtain very high precision. The Advanpix mufti-precision computing toolbox 
(AMCT) concretely demonstrates that multi-precision arithmetic, if properly constructed, can 
be executed very efficiently, unlike other software packages for multi-precision calculations. 
The exponential convergence rate becomes vital in solving multi-dimensional (many 
independent variables). 
     It is important to present the case for GS-RBF methods for large scale, multi-bimensal IE 
and PDE problems that will be executed on parallel computers. Some tools for massively 
parallel computers are being developed in the languages, C and C++ [30], “The GNU 
Multiple Precision Arithmetic Library”. At first glance, CS-RBFs are very appealing because 
the matrix associated with calculating the expansion coefficients is sparse. 
     The performance of direct solvers for sparse matrices using LU, CHOL, and other solvers, 
depends entirely on the locations of the non-zero elements. Bad locations of the zeros can 
require a full O(N3) computational complexity. To alleviate this complexity problem, all 
algorithms use matrix pre-ordering to minimize the fill-in; the time required for pre-ordering 
must be considered. The optimal pre-ordering algorithm is known only for symmetric-
positive definite matrices. But, in the case of unsymmetrical matrices, optimal pre-ordering 
is an NP-complete task. 
     All the existing direct solvers for sparse systems use some kind of heuristic ideas to 
perform the pre-ordering. The complexity of direct solvers for sparse matrices can vary 
wildly from O(N3/2) to O(N3). Direct sparse solvers have poor capability for parallel 
execution, whereas dense solvers are extremely suitable for parallelism. A discussion of the 
sparse complexity issues can be found at www.mathworks.com/help/matlab/math/sparse-
matrix-operations.html. 
     Theoretically, iterative methods are the only way to beat the complexity of direct solvers 
since iterative solvers are supposed to converge within O(N2) operations. However, iterative 
solvers suffer from slow convergence and good pre-conditioners are required, but finding 
good pre-conditioners is separate problem that needs to be solved. It is possible that with 
careful and non-trivial tuning of all parts of sparse solvers (direct or iterative) can be faster 
than solving small dense matrix in ex studied and the computational environment for 
comparison. 
     Both GPUs (graphic processing units) and FPG tended precision on a single CPU. 
However, everything depends on the particular problem being A (field-programmable gate 
arrays) possess highly parallel structures that makes them more efficient than general-
purpose CPUs (central processing units) for algorithms where the processing of large blocks 
of data is performed in parallel. However, GPUs and FPGAs have very limited functionality 
for branching operations that are abundant in sparse solvers making it very difficult for 
porting and running in parallel. 
     On the contrary, dense solvers enjoy massive parallelism because there is no branching 
and all manipulations can be formulated as efficient BLAS3/GEMM operations that are well 
optimized and are designed for massive parallelism on all imaginable platforms. 
     If the Advanpix toolbox is executed for full solvers on CPUs with 10 or more cores, or 
GPUs – the toolbox will beat sparse-based algorithms. The justification for this claim is that 
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dense solvers in the Advanpix toolbox are well suited for parallel execution whereas sparse 
solvers are not. Intuitive conclusions about the efficiency of sparse versus dense RBF systems 
can be misleading. In addition, sparse methods only enjoy polynomial convergence rates 
whereas global RBF systems enjoy exponential convergence rates. 
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