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ABSTRACT
We present the application of the Nonuniform Fast Fourier Transform (NUFFT) to the pseudo-spectral
Eulerian–Lagrangian direct numerical simulation of particle-laden flows. In the two-way coupling
regime, when the particle feedback on the flow is taken into account, a spectral method requires not
only the interpolation of the flow fields at particle positions, but also the Fourier representation of the
particle back-reaction on the flow fields on a regular grid. Even though the direct B-spline interpolation
is a well-established tool, to the best of our knowledge the reverse projection scheme has never been
used, replaced by less accurate linear reverse interpolation or Gaussian regularization. We propose
to compute the particle momentum and temperature feedback on the flow by means of the forward
NUFFT, while the backward NUFFT is used to perform the B-spline interpolation. Since the backward
and forward transformations are symmetric and the (non local) convolution computed in physical
space is removed in Fourier space, this procedure satisfies all constraints for a consistent interpolation
scheme, and allows an efficient implementation of high-order interpolations. The resulting method is
applied to the direct numerical simulation of a forced and isotropic turbulent flow with different particle
Stokes numbers in the two-way coupling regime. A marked multifractal scaling is observed in the
particle statistics, which implies that the feedback from the particles on the fields is far from being
analytic and therefore only high-order methods, like the one here proposed, can provide an accurate
representation.
Keywords: turbulence, particle laden flows, two-way coupling, direct numerical simulation.

1 INTRODUCTION
Inertial particles in turbulence play a critical role in many fields, ranging from climate
physics, astrophysics and engineering. Applications include cyclonic separators of industrial
plants, sprays for surface coating, combustion chambers of internal combustion engines and
cooling of miniaturized components [1]. Many works in the literature focused on the one-way
coupling regime [2], that is, the flow drives the particles dynamics but the back-reaction of
the particles on the fluid is neglected. In that limit, a variety of intriguing phenomena arise
such as clustering and caustics [3], [4]. However, in many physical systems and applications
the particle volume fraction is high enough that the particle dynamics significantly modifies
the features of the flow.

Direct Numerical Simulation (DNS) is a key instrument to gain insight into particle-
laden turbulent flows. The most common approach is the solution of the fluid flow on
a Eulerian structured grid with Lagrangian tracking of the dispersed particles [5]. This
approach requires the computation of the fields at the particle position and the representation
of the coupling terms on the Eulerian grid. Well established and efficient algorithms
are available for the interpolation of the fields at the particle position [6], [7]. On the
other hand, a few techniques are available to accurately represent the back-reaction of
the particles on the flow at the grid points. Only recently a systematic study of the
convergence and accuracy of the “reverse interpolation” methods was carried out for
a few algorithms [8]. In this paper we propose to use the Non Uniform Fast Fourier
Transform (NUFFT) as a tool to compute the coupling term in the direct numerical
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simulation of dilute suspensions of point-like inertial particles in turbulence. The NUFFT
turns out to be an accurate and efficient method, especially suitable for pseudo-spectral
codes.

The NUFFT has been used in a wide range of applications, from medical imaging [9]
to molecular dynamics [10], [11]. By means of a discrete convolution and fast Fourier
transform over an oversampled grid, NUFFT provides a representation of the Fourier
transform of an irregular and non-uniformly sampled field. The number of operations required
for the computation of the NUFFT with accuracy ε of a field sampled at M points is
O (M log (M)−M log (ε)) [12]. The NUFFT consists of three steps: (1) a convolution
in physical space of the field with a basis function to regularize the field; (2) FFT of
the regularized field; (3) a deconvolution in Fourier space. Accuracy is determined by the
properties of the basis function used for the convolution and by the smoothness of the field.
In the point-mass approximation the particle back-reaction is described by a superposition
of Dirac delta functions centered on the particles. According to the classification by [13], a
type-1 NUFFT is used to compute the coupling and a type-2 NUFFT is used to interpolate.
The B-spline interpolation (type-2 NUFFT) performs better than the other methods currently
available [7], especially if employed along with pseudo-spectral methods. The type-1 NUFFT
is nothing but the inverse type-2 NUFFT, therefore we expect that the type-1 NUFFT enjoys
the same benefits as the B-spline interpolation.

The interpolation and reverse interpolation methods should satisfy a few constraints. By
accurate consideration on the energy balance of the coupled system Sundaram and Collins
[14] pointed out that the interpolation schemes for interpolation and reverse interpolation
must be symmetric in order to guarantee the energy conservation. Furthermore, they argued
that the spurious non-locality introduced by interpolation and reverse interpolation should
be minimized for a consistent and convergent method. These constraints are naturally
satisfied by the B-spline interpolation (regarded as a backward NUFFT) together with the
forward NUFFT for the computation of the coupling. Indeed, the backward NUFFT is
the inverse of the forward NUFFT and they are symmetric by definition. Moreover, the
non-locality introduced in physical space is removed in Fourier space because convolution
and deconvolution are carried out with respect to the same basis. Finally, the localized
support of the B-spline basis allows the efficient parallelization of the NUFFT algorithm,
since the particle affects only a limited region of the surrounding flow and next neighbor
communications suffice [11], an important feature of any algorithm devoted to the direct
numerical simulation of turbulent flows.

In principle, the NUFFT presents several advantages with respect to the other methods
reported in the literature. The particle in cell (PIC) method is a straightforward approach to
deal with the coupling term. The force exerted by the particle on the surrounding fluid is
distributed over the surrounding grid points of the cell in which the particle is located, as in
the reverse linear interpolation [15]. Therefore the accuracy of PIC methods intrinsically
depends on the particle number density. Regularization functions usually exploited to
represent the Dirac delta [16] guarantee numerical stability but damp high frequencies and
the resulting coupling terms depend on the regularization scale. Steady Stokeslet method [17]
can overcome the grid dependence but the disturbance decays slowly with the distance from
the particle, therefore a large number of operations is necessary and parallel implementation
is challenging. Gualtieri et al. [8] exploited the closed solution of the unsteady Stokes flow
around a small rigid sphere in order to isolate the singular and regular part of the flow at
scales smaller than the grid resolution. This Exact Regularized Point Particle method (ERPP)
guarantees high accuracy and the momentum conservation, however, it requires the evaluation
of the analytical solution for the unsteady Stokes flow at a previous time, at each time step.
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Most of the works in the literature separated the analysis of the algorithm from the
physics of inertial particles in turbulence. However, an intriguing scenario arises when the
performance of the NUFFT algorithm is analyzed as a function of particle inertia because the
accuracy of the method depends on the regularity of the coupling term which in turns depends
on the particle inertia. In particular, we show that the statistics of the coupling term, such as
its energy spectrum, are intrinsically related to the two-particle statistics.

2 METHODOLOGY
2.1 The physical model

We employ the Eulerian–Lagrangian point particle approach in the two-way coupling regime,
where the transported particles are material point masses which exchange momentum and
heat with the fluid phase. By considering the fluid temperature field as an advected passive
scalar, the equations for the fluid phase are

∇ · u = 0, (1a)

∂tu +∇ ·
(
uu>

)
= − 1

ρ(f)
∇p+ ν∇2u−Cu + f , (1b)

∂tT +∇ · (uT ) = κ∇2T − CT + fT . (1c)

Here ρ(f), T (x, t) and u (x, t) are the fluid density, temperature and velocity, p (x, t) is the
pressure, ν is its kinematic viscosity and κ is the thermal conductivity; the Cu and CT terms
are the momentum and heat feedback of the particles on the flow and f , fT represent a large
scale external forcing, which keeps constant the dissipation rate of turbulent kinetic energy ε
and of temperature variance χ. In wavenumber space the forcing is defined as

f̂(k, t) = ε
û(k, t)∑

k∈Kf
‖û(k, t)‖2

, f̂T (k, t) = χ
T̂ (k, t)∑

k∈Kf
|T̂ (k, t)|2

,

where the hat indicates the Fourier transform and Kf is the set of forced wavenumbers, as
to mimic a large scale Gaussian forcing [15]. The flow is seeded by small, sub-Kolmogorov,
spherical heavy particles with radius r(p) and density ρ(p), whose dynamics, is described by
a simplified version of the Maxey and Riley equation [18] and a linear Newton law for heat
conduction, that is, by the following system

dx(p)

dt
= v(p), (2a)

dv(p)

dt
=

u
(
x(p), t

)
− v(p)

τu,(p)
, (2b)

dθ(p)

dt
=
T
(
x(p), t

)
− θ(p)

τθ,(p)
. (2c)

Here τu,(p) and τθ,(p) are the particle momentum and thermal response time, which, for
ρ(p) � ρ(f), are given by

τu,(p) =
2

9

ρ(p)

ρ(f)

r2
(p)

ν
, τθ,(p) =

1

3

ρ(p)

ρ(f)

c(p)

cf

r2
(p)

κ
,
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where c(p) and c(f) are the particle and fluid specific heat capacity at constant pressure.
The Stokes number and the thermal Stokes number are defined as St = τu,(p)

/
τη , Stθ =

τθ,(p)
/
τη , where τη is the Kolmogorov time scale.

When the fluid exerts a force of the particle the particles exerts an opposite force on
the fluid at the particle position. Analogously, when heat flows from the fluid to the particle
the fluid loses thermal energy at the particle position. This feedback from the particles on
the fields is modeled by means of a superposition of Dirac delta functions centered on the
particles

Cu(x, t) =
4

3
π
ρ(p)

ρ(f)

N(P )∑
p=1

r3
(p)

dv(p)

dt
δ
(
x− x(p)

)
, (3a)

CT (x, t) =
4

3
π
ρ(p)

ρ(f)

c(p)

c(f)
r3
(p)

N(P )∑
p=1

dθ(p)

dt
δ
(
x− x(p)

)
. (3b)

The force exerted by the particle on the finite region of fluid Ω′, centered at x is

C̃u (x, t) =
4

3
π
ρ(p)

ρ(f)

r3
(p)

|Ω′|
∑

xp∈Ω′(x)

dv(p)

dt
. (4)

The coarse grained back-reaction, eqn (4), is exploited to analyze the regularity of the
coupling terms, by characterizing its increments δrC̃u(x, t) = C̃u(x + r, t)− C̃u(x) using
the Hölder condition

〈‖δrCu‖〉 ≤ Λ ‖r‖αH , ∀x, r ∈ Ω

for non-negative real numbers Λ and αH , independent of x and r. Here 〈·〉 is the ensemble
average, approximated by a spatial average for isotropic turbulence. Eqn (4) shows that
the increments of the coarse-grained coupling field are proportional to the increments of
the particle acceleration 〈δr ‖Cu‖〉 ∝ 〈δr ‖v̇‖〉, thus the structure functions of the particle
acceleration provide insight on the regularity of the coupling field. In particular, they
highlight the dependence on the particle inertia of the order of Hölder-continuity αH . At
small separation, the particle acceleration structure functions show a well defined power law
behaviour 〈δr ‖v̇‖〉 ∼ rα(St), as in Fig. 4, which implies

〈δr ‖Cu‖〉 ∼ rα(St) ≤ ΛrαH

for r → 0. Hence, the scaling exponent of the structure functions at small separation
α(St) is an upper bound for αH . When the particle collisions are not taken to account
and the ghost collision approximation is used, particles may overlap breaking the relation
〈δr ‖Cu‖〉 ∝ 〈δr ‖v̇‖〉. However, we expect that in a steady and isotropic turbulent flow the
exact overlapping of distinct particles is an event of zero probability.

2.2 The numerical method

The Navier–Stokes eqns (1) are solved in a tri-periodic cubic domain Ω = [0, 2π]
3 by means

of a pseudo-spectral Fourier method. The 3/2 rule is employed for the dealiasing of the
convolution sums [19] therefore, the number of grid points in each direction is N in Fourier
space and M = 3N/2 in physical space. The fluid velocity and temperature are integrated

240  Advances in Fluid Mechanics XII

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 120, © 2018 WIT Press



in time by means of a second order exponential Runge-Kutta method [20], which has
been preferred to the standard integrating factor for its unconditioned consistency, since the
conservation of the total kinetic and thermal energy is a critical aspect of the simulation. The
same method is used to integrate particle equations. This guarantees consistency, since the
system formed by particles and fluid is evolved in time as a whole.

2.2.1 The B-spline polynomial basis
Let us consider the B-spline polynomial BNS−1 of order NS − 1. The one dimensional B-
spline polynomials are defined by the convolution BNS

(x) = BNS−1(x) ∗B0(x) where B0

is the rectangular function defined on an interval of amplitude ∆x (that is the grid spacing in
the numerical implementation)

B0(x)∆x =

{
1, if |x|/∆x ≤ 1/2

0, otherwise

so that the Fourier representation of the B-spline basis is

B̂NS−1(kx) =
1

2π

(
sinc

(
kx

∆x

2

))NS

. (5)

The spline basis in three dimensions is obtained by separation of variables [7], B(x) =
B(x)B(y)B(z). For sake of clarity, the order subscript will be omitted. This basis guarantees
consistency, since |Ω|B̂(0) = 1, and its Fourier transform can be pre-computed and stored. A
most important computational feature is the localized support of the B-spline basis, since the
convolutions in physical space are executed on a limited portion of the domain, thus allowing
an efficient parallelization [11]. More detailed description of the properties of the B-spline
polynomials in the framework of NUFFT can be found in [21].

2.2.2 Interpolation: backward NUFFT
The interpolation is carried out as a backward Non Uniform Fourier Transform with B-
spline basis, and consists of three steps [7], [13]. First, a field u (x) – a velocity component
or a transported scalar – is projected onto the B-spline basis in Fourier space, by means
of a deconvolution which is efficiently carried out in the wavenumber space, ̂̃u(k) =

û(k)
/(
|Ω|B̂(k)

)
. In a spectral DNS, due to the dealiasing, |kx∆x| ≤ 2π/3 so that B̂,

defined in eqn (5), is always positive. Then an inverse FFT transforms ̂̃u(k) to the physical
space. Finally the field ũ(x) is interpolated at each particle position by means of a convolution
in physical space:

u
(
x(p)

)
=

∫
ΩB

B
(
x− x(p)

)
ũ(x) dx, (6)

where ΩB is the support of the B-spline polynomial. This convolution in physical space and
the former deconvolution in Fourier space cancel out, resulting in an accurate representation
of the actual field at the particle position. Without the deconvolution in Fourier space, the
interpolated field would be coarse-grained and its value at the particle position would be
affected by points which are far away from the particle [14].
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2.2.3 Reverse interpolation: forward NUFFT
The Fourier transform of the momentum or heat back-reaction of the particles on the fluid,
represented by a sum of Dirac delta functions as in eqn (3), is carried out by means of
a forward NUFFT with B-spline basis. The forward NUFFT consists of three steps [13].
At first, the comb C(x) – a component of the momentum coupling or the temperature
coupling – is distributed on the surrounding grid points according to the B-spline weights.
The convolution of the superposition of spikes with the B-spline polynomials results into the
regularized field

C̃ (x) =
4

3
π
ρ(p)

ρ(f)
r3
(p)

∑
p

v̇(p)

∫
ΩB

δ
(
y − x(p)

)
B(x− y) dy. (7)

Then the FFT is applied to the regularized field C̃ and, finally, the deconvolution is carried
out in the wavenumber space,

Ĉ(k) =
1

|Ω|

̂̃
C(k)

B̂(k)
, (8)

to remove the coarse-graining, thus avoiding the non-locality of the interpolation. This step
can be interpreted as gathering together the sub-particles obtained splitting the actual particle
in the first step, eqn (7). Hence, the NUFFT does not introduce non-locality and the symmetry
of forward and backward NUFFTs guarantees energy conservation [14].

2.2.4 Implementation
The discrete convolution required to carry out the NUFFTs is discretized as

u
(
x(p)

)
=

∫
ΩB

B
(
x− x(p)

)
ũ(x)dx ≈

∑
l,m,n

∆x3B
(
xlmn − x(p)

)
ũlmn, (9)

where the components of the position vector xlmn in the Cartesian basis are ∆x [l,m, n]
>,

ũlmn = ũ(xlmn) and the sum is extended over the support of the B-spline. Separation
of variables is exploited to reduce the number of operations, executing the contraction of
the three indexes as a sequence of three contractions on each index [7]. Analogously, the
continuous convolution in physical space with the B-spline basis applied to the coupling
term, eqn (7), results into the discrete sum

C̃lmn =
4

3
π
ρ(p)

ρ(f)

r3
(p)

∆x3

∑
p

v̇(p)∆x
3B
(
xlmn − x(p)

)
. (10)

The discrete convolution in physical space virtually splits each particle in many sub-particles
located at the neighbouring grid points. The mass and thermal energy of the sub-particles
located at xlmn is ∆x3B

(
xlmn − x(p)

)
times smaller than the mass of the actual particle.

The fictitious particles undergo the same acceleration/temperature variation of the actual
particle and are gathered in Fourier space, as in eqn (8), to give back the actual particle.
The contribution C̃lmn(p) to the coupling term C̃lmn from the particle (p) is computed using
the algorithm reported in [7] in reverse, exploiting again separation of variables,

C̃l(p) =
4

3
π
ρ(p)

ρ(f)
r3
(p)BNS

(
xl − x(p)

)
v̇(p),

C̃lm(p) = BNS

(
ym − y(p)

)
C̃l(p),
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C̃lmn(p) = BNS

(
zn − z(p)

)
C̃lm(p),

with a noticeable speed-up of the computation. The Eulerian–Lagrangian code is parallelized
by means of the Message Passing Interface with a two dimensional (pencil) domain
decomposition.The P3DFFT library [22] is employed to carry out the three-dimensional FFT
in parallel. The same Eulerian pencil decomposition is employed for the particles: particles
travel through the domain as the simulation advances and they are exchanged between
neighbouring processors when they cross the processor boundary. Communication is required
to share only a tiny part of the field data at the boundary between two processors.

3 RESULTS
3.1 Convergence and accuracy

As a preliminary test, we have examined the convergence of our implementation of the
NUFFT for different order of the B-spline basis, that is, varying the number of points used for
the discrete convolution, eqns (9)–(10). To assess the accuracy of the B-spline interpolation
[7], computed as a backward NUFFT, the following set of three-dimensional trigonometric
polynomials with unitary root mean square value in Ω has been used,

Tk =
{
f jk(x) =

√
8 cos (kxx) sin (kyy) cos (kzz) :

⌊
k2
x + k2

y + k2
z

⌉
= k2

}
.

Tk is a subset of the trigonometric polynomials with wavevector in the shell ‖k‖ = k so
it contains NTk

≈ 4πk2 elements. The backward NUFFT takes as input the polynomial f jk
together with the particle position x(p) and returns the approximation f jk

(
x(p)

)
of the value

of the polynomial at the particle position. The error of the backward NUFFT can be estimated
as the average of the absolute errors occurred in the interpolation of each element f jk of Tk,
averaged over all the particles:

εbk =
1

N(P )

1

NTk

N(P )∑
p=1

NTk∑
j=1

∣∣∣f jk(x(p)

)
− f jk

(
x(p)

)∣∣∣ .
The convergence and accuracy of the forward NUFFT with B-spline basis is assessed by
performing the Fourier transform of a three-dimensional random field. The test signal is a
superposition of Dirac delta functions with random, uniformly distributed, amplitude a(p)

centered at random points x(p),

C(x) =
∑
p

a(p)δ
(
x− x(p)

)
.

The mean amplitude of the spikes is zero, while its variance is unitary. The forward NUFFT
takes as input the positions of the particles together with the amplitude of the spikes and
returns the approximation Ĉk of the Fourier transform of the superposition of Dirac functions.
We define the error of the forward NUFFT as the average of the absolute errors occurred in
the computation of each mode of the Fourier transform Ĉk, averaged over all the modes at
constant k:

εfk =
1

NTk

NTk∑
j=1

∣∣∣Ĉjk − Ĉjk∣∣∣‖k‖=k .
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Figure 1: Absolute error of the NUFFT for different degrees of the polynomial basis. (a)
Error in the interpolation of a trigonometric polynomial with unitary rms value
and wavenumber k; (b) Error in the Fourier transform of a random uniform field
with unitary rms value at wavenumber k.
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Figure 2: Spectra of the flow fields for different particle inertia, measured by the Stokes
number. (a) Fluid velocity spectra; (b) Fluid temperature spectra.

Fig. 1 shows the error of the backward NUFFT εbk and the forward NUFFT εfk for different
degrees of the B-spline polynomial basis. The order of convergence matches the number
of points used for the interpolation in each direction: εbk ∼ k−NS for k → 0. It is critical
to introduce a small error at low wavenumbers, since the large scales of the flow contain the
largest amount of the energy in a turbulent flow, as shown in Fig. 2. The optimum value of the
order of interpolation for the DNS of particle-laden turbulent flows has been discussed in [23].
Remarkably, the absolute errors of the backward and forward NUFFT are the same. This fact
assesses the forward NUFFT as an accurate and efficient tool for computing the back-reaction
of the particles on the flow. Indeed, the forward NUFFT shares all the advantages of the B-
spline interpolation (backward NUFFT) which performs vastly better than other methods [7],
especially if employed in pseudo-spectral codes.
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3.2 Direct numerical simulation of isotropic steady turbulence

We present some preliminary results which characterize the effect of the particle inertia on
the turbulence statistics. The parameters used in the simulations are in Table 1. A first tool to
gain insight in to the dynamics of the system is the energy balance [14], which for isotropic
steady turbulence reduces to

ε = ν

[〈
‖∇u‖2F

〉
+

9

2
φ

〈∥∥v(p) − u(p)

∥∥2

r2
(p)

〉]
, (11a)

χ = κ

[〈
‖∇T‖2

〉
+ 3φ

〈(
θ(p) − T(p)

)2
r2
(p)

〉]
, (11b)

where φ = 4/3πr3
(p)N(P )/|Ω| is the particle volume fraction. In steady turbulence, the rate of

energy injection by the external forcing balances the overall dissipation rate, which is the sum
of the fluid and particle dissipation since, as eqn (11) shows, particles always dissipate energy
in the limit of the point particle approximation. Therefore, the accuracy of the computation of
the particle back-reaction on the flow directly affects the energy balance. The energy spectrum
of the velocity and temperature fields for different particle inertia are shown in Fig. 2. The
particles, through their back-reaction, significantly modify the spectral distribution of the
energy of the fields. Particles with high inertia strongly smooth out the gradients of the fields.
However, they carry energy from the large scales to the high wavenumbers by means of their
inertia.

In order to assess the convergence of the method we consider a snapshot of the field and
the particles and we compute the spectra of the coupling terms using B-spline polynomial
basis of different degrees. In the previous section we have shown that the NUFFT of a random
field rapidly converges towards the exact direct Fourier transform as the degree of the basis
polynomial is increased. The global error can be estimated from the spectrum obtained with

Table 1: Parameters, in dimensionless code units, of the forced turbulence test case.

Dimensionless kinematic viscosity ν 0.002
Schmidt number Sc 1
TKE dissipation rate ε 0.27
Temperature fluctuation
dissipation rate χ 0.1

Reynolds number Reλ 140
Forced wavenumber kf

√
2

Grid size N 256
Resolution kmaxη 1.68

Particle/fluid density ratio ρ(p)

/
ρ(f) 1000

Particle/fluid specific heat capacity ratio c(p)
/
c(f) 4

Volume fraction φ 0.0002
Stokes number St 0.5, 0.75, 1, 1.5, 2, 3
Thermal Stokes number Stθ 6 St
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different order basis,

εs(NS) =

∑
k

∣∣∣∣∣∣∣Ĉk∣∣∣2NS

−
∣∣∣Ĉk∣∣∣2

NS−1

∣∣∣∣∑
k

∣∣∣Ĉk∣∣∣2
NS

,

where subscript NS indicates the number of points used for the discrete convolution.
Fig. 3 shows the spectrum of the momentum coupling for different particle inertia and the
convergence of the spectrum of the coupling increasing the order of the basis. The relative
error εs(NS) at small NS is too large for a DNS. In order to achieve reasonable accuracy
it should be NS > 2, which confirms that the linear reverse interpolation, together with
the other low-order methods, are not accurate enough to represent the back-reaction of the
particles. The mild reduction of the spectrum for an increasing particle inertia could be a
numerical artifact and will deserve further investigations.

It is interesting to characterize the statistics of the coupling term, in order to gain insight
into the field that the forward NUFFT has to deal with. Particles that are close to each other
may have very large velocity increments, compared to the fluid velocity increments. Hence,
if one attempts to consider the particle velocity as a continuous field, averaging as in eqn
(7), the resulting field would have large gradients. The field may also be multivalued, due to
the ghost collision approximation. This non-smooth behaviour directly affects the coupling,
since it depends on the two point statistics of the particle acceleration. The second order
structure functions of the particle acceleration and the scaling exponents ζna‖ of the n-th
order structure function of the particle acceleration are shown in Fig. 4. The second order
structure functions display a well defined power law behaviour at small separation. However,
the scaling exponent is much less than the value expected for a regular field. The exponents
rapidly saturate at values which decrease with the particle inertia, confirming the irregularity
of the coupling at small scales. Another issue for the representation of the coupling field is
the particle clustering [24]. Inertial particles tend to sample strain-dominated regions of the
flow agglomerating in those regions. As a consequence, the coupling term is a superposition
of spikes that are not uniformly distributed in the domain.
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Figure 3: Spectral representation of the momentum coupling for different particle inertia. (a)
Spectra of the momentum coupling computed with a 4th order basis; (b) Relative
error in the computation of the spectrum of the momentum coupling by means of
the NUFFT, with B-spline basis of different degree.
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Figure 4: Structure functions of the particle acceleration for different particle inertia. (a)
Second order structure functions of the particle acceleration; (b) Scaling exponent
at small separation of the n-th order structure function of the particle acceleration.
The statistics indicate the multifractal behaviour of the inertial particles.

4 CONCLUDING REMARKS
We have shown that the forward NUFFT provides an efficient and yet simple tool to obtain
the accurate Fourier representation of the particle back-reaction on the flow. The forward
NUFFT can be computed using the algorithm for the B-spline interpolation in reverse without
introducing any additional computational load while keeping the limited support of the B-
spline basis which allows an efficient parallelization of the method. We expect that the use of
NUFFTs can lead to an improvement of the accuracy and efficiency of pseudo-spectral codes
for two-way coupled particle-laden turbulent flows.
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GLOBALLY VERSUS COMPACTLY SUPPORTED RBFS 

EDWARD J. KANSA 
Convergent Solutions, Livermore, USA 

ABSTRACT 
For many years, a debate has occurred whether radial basis functions having compact support (CS) or 
global support (GS) is best for engineering and scientific applications. CS RBFs converge as O(h(k+1)), 
h is the fill distance, and its systems of equations have many zeros. In contrast, GS RBFs converge as 
O((c/h)),  <1, c is the GS-RBF shape parameter. Previously, the barrier to exploiting the exponential 
convergence rate of GS-RBFs has been the ill-conditioning problem that is due to computer chip 
restrictions on the relatively large machine epsilon. Although computer chips with arbitrary precision 
are very rare presently, extended precision software has allowed the exploitation of the exponential 
convergence rates of GS-RBFs. When attempting modeling of higher dimension practical problems, 
previous methods such as domain decomposition, global optimization, pre-conditioning will need to be 
blended even on massively parallel computers. 
Keywords: radial basis functions, compact support, global support, polynomial convergence, 
exponential convergence, multi-precision arithmetic. 

1  INTRODUCTION 
Kansa [1], [2] presented a meshless radial basis function (RBF) to solve partial differential 
equations (PDEs). There are two approaches to solve partial differential and integral 
equations with meshless RBF methods: 1. “Compactly supported” RBFs (CS-RBFs); 2. 
“Globally supported” (GS-RBFs). The convergence rate for interpolation is (c/h), where  <1 
[3]–[5]. The ratio, c/h, increases the rate of convergence by decreasing h, the average fill 
distance between pairs of points (h-refinement) or increasing the average value of the shape 
parameter, c, (c-refinement). The basic question is for a given application is whether h-
refinement or c-refinement is more cost effective to achieve the target accuracy with the least 
computational effort. The answer to this question is not definitive but depends upon the 
nature of the application and the available resources. 
     In general, as system of equations becomes larger, the higher is the probability that 
rounding-errors will severely contaminate the solution. A measure of this severity is the 
condition number, (A), of a system of equations relative to the inverse machine epsilon, 
1/M. Whenever (A) > 1/M the solution is worthless. While it is impossible to construct an 
ideal Platonic computer with infinite precision, infinite memory capacity that operates 
infinitely fast, there are some procedures that can be adopted to control the damage caused 
by the accumulation of round-off errors on a finite precision computer. Increasing the number 
of digits of precision requires both sacrificing memory and increasing the processing time 
per unit operation. This sacrifice is worthwhile if the total processing time to achieve target 
accuracy is smaller than the total processing time with single or double precision. 

2  TREATING ILL-CONDITING 
More or less standard methods have been used to treat either CS-RBF or GS-RBF systems 
such are regularization in which a small positive value is added to the diagonal elements 
(Tikhonov [6], Tikhonov and Arsenin [7], Tikhonov et al. [8]). Also related, is the truncated 
singular value decomposition (SVD) m0ethod in which the singular values below a certain 
threshold are neglected, and a modified set of linear equations is used to find the expansion 
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coefficients. As successively more small singular values are deleted. The further does the 
modified matrix deviate from the original matrix or set of linear or linear set of equations. 
     Holobodrodko of the Advanpix LLC [9] consider the eigenvalues of a 150x150 symmetric 
Grcar matrix [10] whose condition number is 3.61. Obviously, a very low condition 
symmetric matrix ought to have very accurate eigenvalues; and it is obvious that the 
eigenvalues of both the Grcar matrix and its transpose ought to be identical. However, the 
Grcar matrix whose condition number is 3.61, on a double precision machine, produces 
incorrect, unequal eigenvalues. Only when the extended precision software package is used 
do the eigenvalues in a quadruple precision calculation become identical. As a cautionary 
note, ideal Platonic arithmetic and mathematics does exist on real computers; rather, fuzzy 
arithmetic and mathematics is perhaps more appropriate, with the fuzziness dependent upon 
the available precision on the computer. 
     The reproducing kernel based Gaussian method expands a Gaussian RBF as an 
eigenfunction of products of the Gaussian exponentials in n, truncated to a finite number of 
terms, M [11], [12]. The kernel expansion is still ill-conditioned, so a combination of a 
truncated SVD and the quotient residual (QR) methods are used to obtain a new set of basis 
functions. The change of that is much better conditioned for h-refinement. 
     Domain decomposition has been successfully to both CS-RBF and GS-RBF methods for 
PDEs. Domain decomposition can use either the overlapping or non-overlapping methods 
[13]–[19]. Assume the problem is continuous, and the computational domain is arbitrarily 
decomposed as a union of smaller subdomains containing an equal number of data centers 
(approximately). Just as with finite element methods, the larger the number of centers within 
a subdomain, the larger will the condition number be, either with CS-RBFs or GS-RBFs. The 
IE or PDE in each subdomain has its “boundary” and interior conditions. In each subdomain, 
the set of equations is solved on separate independent processors in parallel. Then the 
solutions in each subdomain are iteratively blended to enforce continuity of the function and 
its normal and tangential derivatives. Typically, only 2–3 iterations are required to obtain 
satisfactory blending convergence. However, the parallelism is somewhat different if 
compact or global support is used; this will be discussed later. 
     If the problem being solved is fairly homogeneous spatially, then increasing the shape 
parameters or c-refinement while increasing the arithmetic precision is vastly more efficient 
since the total number of data centers can be reduced by many orders of magnitude [20]. 
However, some problems may have so much fine scale structure that h-refinement, rather 
than c-refinement, is required and slower converging compactly supported RBF methods 
may be required for a given available computer. Common sense is required regarding how to 
approach a given problem using the available resources. 
     Very promising is the development of global optimization methods for solving systems 
of equations [21]–[28]. This is a very broad field of research and development that has the 
potential to solve large systems of both linear and nonlinear equations without the need for 
LU methods that exacerbates ill-conditioning. Global optimization can be either search 
procedures, stochastic procedures, or a hybrid mixture of both. 

3  RECOMMENDED STRATEGIES 
It is recommended here that a hybrid approach be used such as: matrix scaling, iterative 
refinement, pre-conditioning, domain decomposition, global optimization, and extended 
arithmetic precision. Higham [29] discussed the importance of multiple precision in the 
practical world, and specifically praised the work of Holobodroko for the development of the 
multi-precision software package [9]. 
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     In addition, the curse of dimensionality is a serious impediment to h-refinement because 
of memory storage issues even on the most recent massively parallel computers. Plasma 
physics is minimally a six-dimensional problem. Discrediting at 1,000 points/dimension 
requires a storage capacity of 10¹⁸ for just the data centers alone. 
     A hardware computer chip remedy for extended precision beyond 64 bits/word is most 
preferable. However, the consumer gadget market does not require much precision, unlike 
scientific computing. For scientific applications, only software methods are the only current 
method to obtain very high precision. The Advanpix mufti-precision computing toolbox 
(AMCT) concretely demonstrates that multi-precision arithmetic, if properly constructed, can 
be executed very efficiently, unlike other software packages for multi-precision calculations. 
The exponential convergence rate becomes vital in solving multi-dimensional (many 
independent variables). 
     It is important to present the case for GS-RBF methods for large scale, multi-bimensal IE 
and PDE problems that will be executed on parallel computers. Some tools for massively 
parallel computers are being developed in the languages, C and C++ [30], “The GNU 
Multiple Precision Arithmetic Library”. At first glance, CS-RBFs are very appealing because 
the matrix associated with calculating the expansion coefficients is sparse. 
     The performance of direct solvers for sparse matrices using LU, CHOL, and other solvers, 
depends entirely on the locations of the non-zero elements. Bad locations of the zeros can 
require a full O(N3) computational complexity. To alleviate this complexity problem, all 
algorithms use matrix pre-ordering to minimize the fill-in; the time required for pre-ordering 
must be considered. The optimal pre-ordering algorithm is known only for symmetric-
positive definite matrices. But, in the case of unsymmetrical matrices, optimal pre-ordering 
is an NP-complete task. 
     All the existing direct solvers for sparse systems use some kind of heuristic ideas to 
perform the pre-ordering. The complexity of direct solvers for sparse matrices can vary 
wildly from O(N3/2) to O(N3). Direct sparse solvers have poor capability for parallel 
execution, whereas dense solvers are extremely suitable for parallelism. A discussion of the 
sparse complexity issues can be found at www.mathworks.com/help/matlab/math/sparse-
matrix-operations.html. 
     Theoretically, iterative methods are the only way to beat the complexity of direct solvers 
since iterative solvers are supposed to converge within O(N2) operations. However, iterative 
solvers suffer from slow convergence and good pre-conditioners are required, but finding 
good pre-conditioners is separate problem that needs to be solved. It is possible that with 
careful and non-trivial tuning of all parts of sparse solvers (direct or iterative) can be faster 
than solving small dense matrix in ex studied and the computational environment for 
comparison. 
     Both GPUs (graphic processing units) and FPG tended precision on a single CPU. 
However, everything depends on the particular problem being A (field-programmable gate 
arrays) possess highly parallel structures that makes them more efficient than general-
purpose CPUs (central processing units) for algorithms where the processing of large blocks 
of data is performed in parallel. However, GPUs and FPGAs have very limited functionality 
for branching operations that are abundant in sparse solvers making it very difficult for 
porting and running in parallel. 
     On the contrary, dense solvers enjoy massive parallelism because there is no branching 
and all manipulations can be formulated as efficient BLAS3/GEMM operations that are well 
optimized and are designed for massive parallelism on all imaginable platforms. 
     If the Advanpix toolbox is executed for full solvers on CPUs with 10 or more cores, or 
GPUs – the toolbox will beat sparse-based algorithms. The justification for this claim is that 
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dense solvers in the Advanpix toolbox are well suited for parallel execution whereas sparse 
solvers are not. Intuitive conclusions about the efficiency of sparse versus dense RBF systems 
can be misleading. In addition, sparse methods only enjoy polynomial convergence rates 
whereas global RBF systems enjoy exponential convergence rates. 
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