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ABSTRACT
The effect of a submarine asymmetric trench on the efficiency of an Oscillating Water Column (OWC)
device in a two-layer fluid is analyzed within the context of linearized water wave theory. Under the
potential flow approach, the associated boundary value problem is solved by the matched eigenfunction
expansion method. Numerical results for the OWC device efficiency for several physical parameters and
configurations were obtained. Three different positions of the submarine trench were considered. The
effects of the submarine trench depths and the distance of the trench from the surface piercing barrier
on the efficiency of the OWC device are discussed in detail. In addition to the structural properties, the
OWC performance is dependent on the fluid density ratio and the interface location. In order to verify
the computational results, these are compared with results published in specialized literature and very
good agreement was achieved.
Keywords: oscillating water column, submarine trench, linearized wave theory, two-layer fluid,
efficiency of oscillating water column.

1 INTRODUCTION
The study of the efficiency of an Oscillating Water Column device in a single fluid domain of
homogeneous density has been extensively investigated in recent years and remains a topic
of great interest in linear wave theory. In this context, several relevant analytical, numerical
and experimental investigations have been performed. However, there has been negligible
progress in analyzing the performance of a OWC device in a two-layer or stratified fluid
with different but constant densities. Density stratification, which is due to solar heating or
the mixing of fresh water with saline water, is a common phenomenon in the ocean and
is of increasing interest, since the physical consequences are significant in a wide range of
applications, particularly marine science and ocean renewable energy.

In a two-layer fluid, the fluid in each layer is assumed to be inviscid, incompressible and
have a constant density, with the upper, lighter fluid, of density ρ1 lying over the heavier
fluid of density ρ2 and there are two wave modes types because there is a free surface
and an interface [1]. Among the various aspects of this problem, a major concern is the
transformation of wave energy from surface to internal waves and vice versa, Wehausen and
Laitone [2]. As a result, for each mode, the wave elevations for the free surface and for the
interface must be analyzed, due to the changing bathymetry of the ocean floor.

The objective of this work is to analyze the efficiency of an OWC device associated with
the transformation of energy between surface and internal waves and vice versa, due to the
presence of a nearby trench. To the authors’ knowledge, to date, no studies have been made
on an OWC device in a two-layer fluid where the immersed tip of the front barrier is located
both above and below the interface.

Using the eigenfunction expansion method, a system of equations are obtained for the
determination of the unknowns in surface and internal wave modes. Numerical estimates for
the efficiency of the OWC device are then obtained for several physical parameters involved in
the problem. In order to verify the computational results, numerical results for particular cases
are compared with results obtained earlier by Evans and Porter [3] and Rezanejad et al. [4].
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2 THE BOUNDARY-VALUE PROBLEM

In the present study, the Cartesian coordinate system was chosen, with the x axis
corresponding to the opposite direction of the wave propagation and the z axis corresponding
to the upward direction. The origin of the coordinate system lies on the undisturbed water
surface and the rigid, vertical wall. The OWC is integrated by a rigid wall, situated at x = 0,
extending down to the bottom and complemented by a thin, vertical, surface-piercing barrier,
at x = b, with a draft, ha, as shown in Fig. 1. A turbine is connected to the air chamber formed
by the two walls. The distance of the submarine trench from the wall located at x = b, is L
and the width of the trench is equal to L2.

In the two-layer fluid, the upper fluid has an undisturbed free surface located at
z = 0 and the two fluids are separated by a common undisturbed interface located
at z = −h. The upper and lower fluid domains are 0 < x <∞ (see Fig. 1). The
domains are divided into four regions, region 1 (S2 < x <∞,−h1 < z), region 2 (S <
x < S2,−h3 < z), region 3 (b < x < S,−h2 < z) and region 4 (0 < x < b,−h2 < z),
with S = b+ L and S2 = S + L2. The rigid wall is denoted by Lb = {(x, z) : x =
S,−ha ≤ z ≤ 0}, the gap between the immersed tip of the barrier and the bottom by
Lg = {(x, z) : −h2 ≤ z ≤ −ha}, the rigid vertical wall by Sw = {(x, z) : x = 0,−h2 <
z < 0}, the internal free surface inside the water column by Si = {(x, z) : 0 ≤ x ≤
b, z = 0}, the external free surface by Sf = {(x, z) : b ≤ x ≤ ∞, z = 0} and the bottom
by Sb = {(x, z) : (0 < x < S, z = −h2) ∪ (x = S,−h3 < z < −h2) ∪ (S < x < S2, z =
−h3) ∪ (x = S2,−h3 < z < −h1) ∪ (S2 < x <∞, z = −h1)}.

The fluid is assumed to be inviscid and incompressible and linear wave theory is applied,
ignoring the effect of surface tension. An irrotational flow and a simple harmonic in time
with angular frequency ω are assumed. There is thus a velocity potential Φj(x, z, t) with
Φ(x, z, t) = Re{φj(x, z)e−iωt} for j = 1, 2, 3 and 4, where Re{ } denotes the real part of a
complex expression and t is the time. The spatial velocity potential φj for j = 1, 2, 3 and 4
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Figure 1: Definition sketch of an OWC device near an asymmetric submarine trench in a
two-layer fluid.
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satisfies the Laplace equation:
∂2φj
∂x2

+
∂2φj
∂z2

= 0. (1)

In addition, φ satisfies the no-flow condition on the solid boundaries given by:

∂φ

∂z
= 0 on


z = −h1 for S2 < x <∞,
z = −h2 for 0 < x < S,

z = −h3 for S < x < S2,

(2a)

∂φ

∂x
= 0 on

{
x = S for − h3 < z < −h2,
x = S2 for − h3 < z < −h1.

(2b)

The boundary condition on the rigid vertical wall is described as:

∂φ

∂x
= 0 on x = 0, −h2 < z < 0. (3)

The boundary condition on the barrier is given by:

∂φ

∂x
= 0 on x = b, −ha < z < 0. (4)

Since it is assumed that the motion is harmonic in time, an imposed pressure distribution
over the internal free surface is of the form P (t) = Re{pe−iωt}; thus, the linearized free
surface boundary condition is given by:

∂φ

∂z
−Kφ = 0 on z = 0, b < x <∞, (5)

∂φ

∂z
−Kφ =

iωp

ρg
on z = 0, 0 < x < b, (6)

whereK = ω2/g and g is the gravitational constant. Assuming that the pressure is continuous
at the interface, the linearized dynamic and kinematic conditions at the mean interface yield
this equation (see Wehausen and Laitone [2]):(

∂φj
∂z

)
z=−h+

=

(
∂φj
∂z

)
z=−h−

, (7)

s

(
∂φj
∂z
−Kφj

)
z=−h+

=

(
∂φj
∂z
−Kφj

)
z=−h−

, (8)

with j = 1, 2, 3 and 4, and s = ρ1/ρ2 with 0 < s < 1.
The continuity of pressure and horizontal velocity across the vertical planes separating

the fluid regions are given by (Kirby and Dalrymple [5] and Rezanejad et al. [4]):

φ1 = φ2,
∂φ1
∂x

=
∂φ2
∂x

, on x = S2, −h1 ≤ z ≤ 0, (9)

φ2 = φ3,
∂φ2
∂x

=
∂φ3
∂x

, on x = S, −h2 ≤ z ≤ 0, (10)
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φ3 = φ4,
∂φ3
∂x

=
∂φ4
∂x

, on x = b, −h2 ≤ z ≤ −ha. (11)

Following the method of Evans and Porter [3] the total potential φ(x, z) is decomposed
into two parts as follows:

φ(x, z) = φS +
iωp

ρg
φR. (12)

The scattered potential φS satisfies eqns (1)–(5) and (7)–(11) with p = 0, while φR

satisfies eqns (1)–(4) and (6)–(11) with eqn (6) replaced by:

∂φR

∂z
−KφR = 1 on z = 0, 0 < x < b. (13)

In addition, the far-field behavior for the scattering and radiation problem are of the form:

φS(x, z) ∼
II∑
j=I

(
e−ikj(x−S2) +Rjeikj(x−S2)

)
ψj(kj , z), as x→ +∞ (14)

and

φR(x, z) ∼
II∑
j=I

AR
j e−ikj(x−S2)ψj(kj , z), as x→ +∞, (15)

respectively, where AR
j with j = I, II , is related to the amplitude of the surface and internal

waves radiated to +∞, due to the forcing on the internal free surface; RI and RII are the
unknown constants associated with the reflection of incident surface and internal waves in
the scattering problem of the waves of wave numbers kI and kII in region 1, respectively;
ψj(kj , z) is the associated vertical eigenfunction given by:

ψj =

{
N−1

j sinh kj(h1−h)(kj cosh kjz+K sinh kjz)

K cosh kjh−kj sinh kjh
for − h < z < 0,

N−1j cosh kj(z + h1) for − h1 < z < −h,
(16)

where

N2
j = (4kj)

−1 (K cosh kjh− kj sinh kjh)
−2[

(K cosh kjh− kj sinh kjh)
2

[2(h1 − h)kj + sinh 2kj(h1 − h)]−

s sinh2 kj(h1 − h)
[
K2(2kjh− sinh 2kjh)−

k2j (2kjh+ sinh 2kjh) + 2Kkj (cosh 2kjh− 1)
]]
, (17)

with j = I and II . In addition, kj are the roots of the dispersion relation in surface and
internal modes, where wave numbers kI and kII indicate the positive real roots and ikn for
n ≥ 1 indicate the purely imaginary roots of the dispersion relation given by:

(1− s)k2 tanh k(h1 − h) tanh kh− kK [tanh kh+ tanh k(h1 − h)] +

K2 [s tanh k(h1 − h) tanh kh+ 1] = 0. (18)
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In addition to Rj and AR
j , of considerable interest is the induced volume flux across the

internal free surface, Q(t) = Re{qe−iωt} so that (Evans and Porter [3]):

q =

∫
Si

∂φ

∂z
dx = qS +

iωp

ρg
qR, (19)

where qS and qR are the volume fluxes across Si in the scattering and radiation problems,
respectively. Using the continuity of volume flux across the internal free surface and the gap
between the barrier tip and the bottom, we obtain:

qS,R =

∫
Si

∂φ

∂z
dx =

∫
Lg

∂φ

∂x
dz. (20)

The volume flux qR for the radiation problem is separated into real and imaginary parts
as in [3]:

iωp

ρg
qR =

(
B̃ − iÃ

)
p, (21)

where Ã and B̃ are analogous to the added mass and the radiation damping coefficients in a
rigid body system and following Evans and Porter [3], are called the radiation susceptance
and the radiation conductance parameters and are given as follows:

Ã =
ω

ρg
Re{qR}, (22a)

B̃ =
ω

ρg
Re{qR}. (22b)

Spatial potential φR and the complex conjugate φ̄R both satisfy the governing eqn (1) and the
same boundary conditions. We use Green’s integral theorem on φR and φ̄R, given by:∫

C

(
φR

∂φ̄R

∂n
− φ̄R ∂φ

R

∂n

)
ds = 0, (23)

where the closed boundary C is composed of C = Sb + Sw + Si + Sf + Lb + S∞, where
S∞ is the fictitious far boundary as x→∞. Due to the free surface condition and the rigid
structural boundary conditions, the lines Sf , Sb, Sw and Lb have no contributions.

In addition, using the condition at the interface and the result given by (Das et al. [6];
Panda and Martha [7]): ∫ −h

−h1

ψ−I ψ
−
IIdz + s

∫ 0

−h
ψ+
I ψ

+
IIdz = 0, (24)

where superscripts + and − indicate the upper and lower layer vertical eigenfunctions,
respectively, and after taking the contribution from the lines S∞ and Si and eqns (15) and
(19), an explicit expression for B̃, in terms of the complex amplitude of the radiated surface
and internal waves, AR

I and AR
II , respectively, is obtained in the form:

B̃ =
ω

ρg
K
(
kI |AR

I |2 + kII |AR
II |2

)
. (25)

In addition, based on the assumption that there is a linear relation between the volume
flux through the turbine and the pressure drop across it, an expression for the efficiency of the
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device is derived. Therefore, we assume:

q = Λp, (26)

where Λ is a real control parameter, so that the following expression for the maximum
efficiency is obtained:

ηmax =
2B̃

Λopt + B̃
, (27)

where

Λopt =
(
B̃2 + Ã2

) 1
2

. (28)

Details of the derivation of such equations can be found in Evans [8] or Smith [9].

3 SOLUTION
The matched eigenfunction expansion method described by Rezanejad et al. [4], for the case
of a single chamber on a stepped bottom, was extended to obtain the velocity potentials for a
single chamber in a two-layer fluid close to a submarine trench. Hence, the details are omitted
here to avoid repetition. The spatial velocity potentials in the four regions are expanded in
terms of the appropriate eigenfunctions as given by:

φR1 (x, z) =

II∑
j=I

AR
j e

ikj(x−S2)ψj +

∞∑
n=1

AR
n e
−kn(x−S2)ψn, (29)

φR2 (x, z) =
II∑
j=I

(
ER

j

coswj(S2 − x)

coswjL2
+ FR

j

sinwj(S2 − x)

sinwjL2

)
Gj+

∞∑
n=1

(
ER

n

coshwn(S2 − x)

coshwnL2
+ FR

n

sinhwn(S2 − x)

sinhwnL2

)
Gn, (30)

φR3 (x, z) =
II∑
j=I

(
CR

j

cos pj(S − x)

cos pjL
+DR

j

sin pj(S − x)

sin pjL

)
Mj+

∞∑
n=1

(
CR

n

cosh pn(S − x)

cosh pnL
+DR

n

sinh pn(S − x)

sinh pnL

)
Mn, (31)

φR4 (x, z) =
II∑
j=I

BR
j cos pjxMj +

∞∑
n=1

BR
n cosh pnxMn +

1

K
, (32)

with the eigenfunctions Mj and Gj as given by:

Mj =

{
L−1

j sinh pj(h2−h)(pj cosh pjz+K sinh pjz)

K cosh pjh−pj sinh pjh
for − h < z < 0,

L−1j cosh pj(z + h2) for − h2 < z < −h,
(33a)
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Gj =

{
Y −1
j sinhwj(h3−h)(wj coshwjz+K sinhwjz)

K coshwjh−wj sinhwjh
for − h < z < 0,

Y −1j coshwj(z + h3) for − h3 < z < −h,
(33b)

while the terms Lj and Wj for j = I, II are given as follows:

L2
j = (4pj)

−1 (K cosh pjh− pj sinh pjh)
−2[

(K cosh pjh− pj sinh pjh)
2

[2(h2 − h)pj + sinh 2pj(h2 − h)]−

s sinh2 pj(h2 − h)
[
K2(2pjh− sinh 2pjh)−

p2j (2pjh+ sinh 2pjh) + 2Kpj (cosh 2pjh− 1)
]]
, (34)

Y 2
j = (4wj)

−1 (K coshwjh− wj sinhwjh)
−2[

(K coshwjh− wj sinhwjh)
2

[2(h3 − h)wj + sinh 2wj(h3 − h)]−

s sinh2 wj(h3 − h)
[
K2(2wjh− sinh 2wjh)−

w2
j (2wjh+ sinh 2wjh) + 2Kwj (cosh 2wjh− 1)

]]
. (35)

On the other hand, Mn, Gn, Ln and Yn for n ≥ 1 are defined by eqns (28)–(35) with the
substitution of pj and wj by ipn and iwn, respectively.

The positive real roots pI and pII , and the purely imaginary roots ipn for n ≥ 1 of the
dispersion relation in p are given by

(1− s)p2 tanh p(h2 − h) tanh ph− pK [tanh ph+ tanh p(h2 − h)] +

K2 [s tanh p(h2 − h) tanh ph+ 1] = 0. (36)

The wave numbers wI and wII are positive real roots and iwn for n ≥ 1 are purely
imaginary roots of the dispersion relation

(1− s)w2 tanhw(h3 − h) tanhwh− wK [tanhwh+ tanhw(h3 − h)] +

K2 [s tanhw(h3 − h) tanhwh+ 1] = 0, (37)

where 0 < kI < kII , kn > 0; 0 < pI < pII , pn > 0; 0 < wI < wII , wn > 0.
The eigenfunctions ψn’s, Mn’s and Gn’s with n = I, II, 1, 2, . . . are orthonormal with

respect to the inner product

〈ψn, ψm〉 =

∫ −h
−h1

ψn(z)ψm(z)dz + s

∫ 0

−h
ψn(z)ψm(z)dz = δnm, (38)

〈Mn,Mm〉 =

∫ −h
−h2

Mn(z)Mm(z)dz + s

∫ 0

−h
Mn(z)Mm(z)dz = δnm, (39)

〈Gn, Gm〉 =

∫ −h
−h3

Gn(z)Gm(z)dz + s

∫ 0

−h
Gn(z)Gm(z)dz = δnm, (40)

where δnm is the Kronecker delta.
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The coefficients AR
n , BR

n , CR
n , DR

n , ER
n and FR

n , with n = I, II, 1, 2, . . . in eqns (29)–
(32), are the unknown constants to be determined. Application of the matching conditions as
in eqns (9) and (11) on the velocity potentials as described by eqns (29)–(32), exploiting the
orthonormality of the eigenfunctions as defined in eqns (38)–(40) and truncating the infinite
series after N terms, gives the following system of equations for the determination of the
unknowns:

II∑
j=I

ikjA
R
j

∫ 0

−h1

ψjPmdz +
II∑
j=I

(
wj

sinwjL2

)
FR
j δjm −

∞∑
n=1

knA
R
n

∫ 0

−h1

ψnPmdz+

∞∑
n=1

(
wn

sinhwnL2

)
FR
n δnm = 0 for m = I, II, 1, 2, . . . , (41a)

II∑
j=I

AR
j δjm −

II∑
j=I

(
1

coswjL2

)
ER

j

∫ 0

−h1

Gjψmdz +
II∑
j=I

AR
n δnm−

∞∑
n=1

(
1

coshwnL2

)
ER

n

∫ 0

−h1

Gnψmdz = 0 for m = I, II, 1, 2, . . . , (41b)

II∑
j=I

(
pj

sin pjL

)
DR

j

∫ 0

−h2

MjGmdz−

II∑
j=I

wj

(
−ER

j tanwjL2 + FR
j cotwjL2

)
δjm +

∞∑
n=1

(
pn

sinh pnL

)
DR

n

∫ 0

−h2

MnGmdz−

∞∑
n=1

wn

(
ER

n tanhwnL2 + FR
n cothwnL2

)
δnm = 0 for m = I, II, 1, 2, . . . ,

(41c)

−
II∑
j=I

(
1

cos pjL

)
CR

j δjm +
II∑
j=I

(
ER

j + FR
j

) ∫ 0

−h2

GjMmdz−

∞∑
n=1

(
1

cosh pnL

)
CR

n δnm +
∞∑

n=1

(
ER

n + FR
n

) ∫ 0

−h2

GnMmdz = 0

for m = I, II, 1, 2, . . . , (41d)

−
II∑
j=I

pjB
R
j sin pjb δjm +

II∑
j=I

pj
(
−CR

j tan pjL+DR
j cot pjL

)
δjm+

∞∑
n=1

pnB
R
n sinh pnb δnm +

∞∑
n=1

pn
(
CR

n tanh pnL+DR
n coth pnL

)
δnm = 0

for m = I, II, 1, 2, . . . , (41e)
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−
II∑
j=I

BR
j cos pjb

∫ −ha

−h2

MjMmdz+

II∑
j=I

CR
j

(∫ −ha

−h2

MjMmdz − pj tan pjL

∫ 0

−ha

MjMmdz

)
+

II∑
j=I

DR
j

(∫ −ha

−h2

MjMmdz + pj cot pjL

∫ 0

−ha

MjMmdz

)
+

−
∞∑

n=1

BR
n cosh pnb

∫ −ha

−h2

MnMmdz+

∞∑
n=1

CR
n

(∫ −ha

−h2

MnMmdz + pn tanh pnL

∫ 0

−ha

MnMmdz

)
+

∞∑
n=1

DR
n

(∫ −ha

−h2

MnMmdz + pn coth pnL

∫ 0

−ha

MnMmdz

)
=

1

K

∫ −ha

−h2

Mmdz

for m = I, II, 1, 2, . . . . (41f)

4 RESULTS AND DISCUSSION
In this section, results based on the analytical method described above are presented. The
physical parametric values that were kept constant throughout the numerical computations
are ρ = 1025 kgm−3, g = 9.81 m s−2. In order to perform the numerical computation, all the
infinite systems are truncated up to a finite number of terms N.

Since between 20 and 30 terms are enough to ensure convergence of the numerical results
within three decimal places, in the calculations here, all infinite series sums were truncated
up to N = 20 number of evanescent modes.

In addition, introducing the non-dimensionalised quantities µ and ν which represent the
radiation susceptance and radiation conductance coefficients, namely:

µ =
ρg

ωb
Ã (42)

and
ν =

ρg

ωb
B̃. (43)

Therefore, the efficiency ηmax is given by

ηmax =
2ν

(ν2 + µ2)
1/2

+ ν
. (44)

To validate the method described here, the numerical results for the limiting cases of
Evans and Porter [3] and Rezanejad et al. [4] were used. For s = 1 and h = 0, the dispersion
relations in eqns (18), (36) and (37) are reduced to the dispersion relations in a single layer
fluid. In the case of s = 0.97 and h/h1 = 0.05, the efficiency from this study was compared
with the corresponding results of Evans and Porter [3] for an OWC device with a horizontal
topography, as shown in Fig. 2(a). The circles in Fig. 2(a) depict the results of Evans and
Porter [3], whereas the line represents the results calculated by the present method. It can
be seen from Fig. 2(a) that the results are in good agreement. The efficiency obtained for an
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Figure 2: Analytical results for efficiency versus Kh1 for various barrier to wall spacings,
interface positions and barrier to trench spacings.

OWC device with stepped bottom topography with s = 0.97 and h/h1 = 0.01, together with
the nondimensional parameters h2/h1 = 0.5, h3/h1 = 1.0 and ha/h1 = b/h1 = L/h1 =
L2/h1 = 0.25, was compared with the corresponding results of Rezanejad et al. [4]. The
results agree very well, as shown in Fig. 3(a).

Fig. 2(a) shows the results for the efficiency ηmax versus Kh1 for various barrier to
wall spacings (b/h1 = 1.0, 0.25, and 0.0625) for a sea bottom without a trench in a two-
layer fluid. For this case it is observed that by increasing the distance of the barrier from the
wall b/h1, the value of the first peak frequency is reduced, similar to the trends observed in a
single-layer fluid. This is may be due to the fact that by increasing the width of the device, the
distance the upper and lower layer fluid particles must travel in a period of motion increases,
which leads to a decrease in the value of Kh1 at which resonance occurs.

Fig. 2(b) shows the efficiency versus Kh1 for an OWC device near an asymmetric trench
for different depth ratio values h/h1(= 0, 05, 0.10, 0.20, 0.30, 0.40). It is observed that the
efficiency increases slightly as the depth ratio h/h1 increases. This pattern is more significant
when the interface is nearer and above the immersed tip of the barrier. This may be because
internal waves incident to the barrier produce a highly resonant motion, due to their shorter
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Figure 3: Analytical results for efficiency versus Kh1 for various locations of the trench and
density ratios.

wavelengths with respect to the surface wavelength. Also, the interaction between the incident
and reflected internal and surface waves affects the resonance frequency, which can lead to
increased efficiency of the OWC.

Fig. 2(c) shows the results for the efficiency ηmax versus Kh1 for various barrier to
trench spacings (L/h1 = 0.75, 1.00, and 1.25) in a two-layer fluid. It is observed that, for
a symmetrical trench, the efficiency increases as the distance between the submarine trench
and the water column barrier increases. This is due to the fact that the influence of the trench
on the OWC performance is less significant when the distance between them grows, showing
a similar pattern to that presented for a flat-bottom bathymetry.

In Fig. 3(a), the efficiency versus Kh1 is depicted for various locations of the trench. For
values of less than 2.3 for the non-dimensional frequency, the trench has a decreasing effect
on the efficiency compared with the case of a stepped bottom topography, h2/h1 = 0.50 and
h3/h1 = 1.0, suggesting that the water depth in region 3 plays an important role, since the
waves are reflected back, leading to a decrease in the capture of wave energy by the OWC
device [10].

Fig. 3(b) plots efficiency versus Kh1 for an asymmetric trench for various density
ratios s(= 0.80, 0.85, 0.90, 0.95, 0.97). The values of 0.95 and 0.97 correspond to common
density ratios of a two-layer fluid consisting of freshwater and saltwater. Fig. 3(b) shows that
the peak frequency moves slightly to the right-hand side and the frequency bandwidth slightly
increases when the density ratio s decreases.

5 CONCLUSIONS
The problem of an asymmetric submarine trench on the efficiency of an Oscillating Water
Column device in a two-layer fluid was analyzed by employing the eigenfunction expansion
method. The analytical results were compared with limiting cases obtained by Evans
and Porter [3] and Rezanejad et al. [4] for the cases of horizontal and stepped bottom
bathymetries, respectively, on the efficiency of an OWC device in a single-layer fluid and
very good agreement was achieved. Numerical estimates for the efficiency were then obtained
for various values of the physical parameters involved in the problem. In addition to the
structural properties, it is observed that the interface position and the fluid density ratio affect
the efficiency of an OWC device in a two-layer fluid. The depth of the submarine trench and
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the distance of the trench from the water column barrier also affect the OWC performance. In
particular, for a symmetrical trench, the efficiency increases as the distance of the submarine
trench from the water column barrier increases. Finally, it is hoped that the results from
this study may provide valuable information for the clean and efficient harnessing of marine
renewable energy.
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REFERENCES
[1] Kumar, P.S., Bhattacharjee, J. & Sahoo, T., Scattering of surface and internal waves by

rectangular dikes. Journal of Offshore Mechanics and Arctic Engineering, 129(4), pp.
306–317, 2007.

[2] Wehausen, J.V. & Laitone, E.V., Surface waves. Encyclopedia of Physics, Vol. 9,
Springer-Verlag: Berlin, pp. 446–778, 1960.

[3] Evans, D.V. & Porter, R., Hydrodynamic characteristics of an oscillating water column
device. Applied Ocean Research, 17(3), pp. 155–164, 1995.

[4] Rezanejad, K., Bhattacharjee, J. & Guedes Soares, C., Stepped sea bottom effects on
the efficiency of nearshore oscillating water column device. Ocean Engineering, 70, pp.
25–38, 2013.

[5] Kirby, J.T. & Dalrymple, R.A., Propagation of obliquely incident water waves over a
trench. Journal of Fluid Mechanics, 133, pp. 47–63, 1983.

[6] Das, D., Mandal, B.N. & Chakrabarti, A., Energy identities in water wave theory
for free-surface boundary condition with higher-order derivatives. Fluid Dynamics
Research, 40(4), pp. 253–272, 2008.

[7] Panda, S. & Martha, S.C., Oblique wave scattering by undulating porous bottom in
a two-layer fluid: Fourier transform approach. Geophysical and Astrophysical Fluid
Dynamics, 108(6), pp. 587–614, 2014.

[8] Evans, D.V., Wave-power absorption by systems of oscillating surface pressure
distributions. Journal of Fluid Mechanics, 114, pp. 481–499, 1982.

[9] Smith, C.M., Some problems in linear water waves. PhD Thesis, University of Bristol,
UK, 1983.

[10] Anvesh, V., Karmakar, D. & Guedes Soares, C., Performance of oscillating water
column wave energy converters integrated in breakwaters. Progress in Renewable
Energies Offshore, ed. C. Guedes Soares, Taylor and Francis Group: London, pp. 295–
302, 2016.

148  Advances in Fluid Mechanics XII

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 120, © 2018 WIT Press




