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Abstract 

A two-dimensional panel method is proposed based on the Schwartz–Christoffel 
transformation from a unit circle to a polygonal aerofoil. Although numerical 
integration of the panel length is necessary, this method gives analytical solution 
for an aerofoil approximated as a polygon. It is also found that this method solves 
an extremely thin aerofoil problem properly. This is because the solution is 
simply an analytical transformation of the potential flow around a circular 
cylinder. In this paper, an inverse design method of a two-dimensional aerofoil is 
proposed based on the Schwartz–Christoffel transformation. The velocity 
distribution in the physical plane is given. Calculations are conducted backward 
from the solutions of symmetric Joukowski and NACA0012 aerofoils together 
with non-symmetric NACA4412 where simultaneous equations are solved to get 
the aerofoil. A non-linear inverse method is finally proposed. Triangular and 
NACA aerofoils are tested to show the concept. 
Keywords: aerofoil, inverse design, conformal mapping. 

1 Introduction 

The Schwartz–Christoffel panel method has been proposed. A unit circle is 
transformed to a polygon. A potential flow around a circular cylinder becomes that 
around an aerofoil approximated as a polygon. It is important to note that a flow 
around an aerofoil is an analytical solution although this method requires 
numerical integration of the panel length. 
     During the course of the development of the technique, it is found that an 
analytical formula of the velocity at a collocation point of a panel inversely 
becomes a linear equation of the panel inclinations when the velocity distribution 
in the physical  -plane with nodes and the angle of attack in the original z-plane 
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are given. This method is first explained and then a possible full inverse method 
is proposed based on velocity and/or pressure at given coordinates. 

2 Schwartz–Christoffel panel method 

Points  
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j Njez j on a unit circle in the z-plane 

can be transformed to a N polygonal aerofoil in the  -plane based on the 

Schwartz–Christoffel transformation given by [1–3] 
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where iKeA  is a complex constant with real constants K and . 
     Figure 1 shows the result of a Joukowski aerofoil with 40N  where 0z is the 

centre of a base circle in the original z-plane and  is an angle of attack.  
Agreement with the theory is quite satisfactory, cf. [4, 5]. 
 

 

Figure 1: Surface velocity V of a Joukowski aerofoil at 0 ,    
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3 Backward calculation from known solutions 

3.1 Symmetric aerofoil 

For simplicity, a backward calculation from known solutions is conducted. A 
symmetric velocity distribution iV on the node i  of the physical  -plane is given 

where the values of  Nii 1  in the original z-plane are incidentally known as 

shown in fig. 2. This is not the case for the inverse process. This is actually a 
Joukowski aerofoil which shape has to be determined.  
     From the Schwartz–Christoffel transformation [2] 
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where iV is the panel velocity and V is the uniform velocity, respectively, in the

 -plane, z is the angle of attack in the z-plane,  Njj 1 is the aerofoil panel 

turning angle ratio relative to  , and  
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i 


  1

2
1

mid

  .                                      (3) 

Note that midi does not necessarily represent the panel midpoint. 

     Logarithmic form of eqn (2) becomes 
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Because of symmetry, eqn (4) becomes for an even number N  
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also obtained from the symmetry. 
     For the symmetric aerofoil, the chord inclination is zero, and 

   0 .     (7) 
     The aerofoil coordinates  iii  , become [2] 
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where  Njl j 1 is the panel length, and  Njj 1 is the panel inclination 

angle, respectively.  KK /,/ 11   is the trailing edge coordinate and it can be 

chosen arbitrary, and most typically (1,0). The constant K  can be determined 
from the chord length c .  

     Figures 2 and 3 represent Joukowski     0,02.0,/4/1 0
2  zzz  and 

NACA0012 aerofoils, respectively. Note that these results are obtained from the 
known answers just to show the backward calculation procedure. 
     Numerical irregularity in i  might appear even when the matrix of a solved 

symmetric aerofoil is inverted. In this case, the velocity from known i  is 

recalculated intentionally, and then the matrix is inverted again to get regular 
solutions of i  to show the process. Slight numerical error may cause the 

irregularity. 

3.2 Non-symmetric aerofoil 

In eqns (4), the angles  Nii 1  and z  are given in the original z -plane, and 

VVi / is known in the physical  -plane. Care must be taken that although the 

node number i  is given, i is not given. 

     Equations (4) are solved, and  Nii 1 are obtained; see fig. 4(c). Equations 

(8) and (9) give the aerofoil shape as in fig. 4(d). Figure 4(d) can be rotated and 

contracted to fig. 4(e) with  -0.07263.656,/1   KKeA i . The velocity 

and the pressure distribution are finally obtained in fig. 4(f) and fig. 4(g). 
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(a)  Nii 1  0z  
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 d inverse    Niiii  1,  

Figure 2: Backward calculation of a symmetric Joukowski aerofoil 

1 21.
2

N
   

i
1
2

i

N
x

y

N/2

N/2+1

U_inf

‐1.5

‐1

‐0.5

0

0.5

1

1.5

i

V
 i/
V
_i
n
f

i=12

i

N

N/2

N/2+1

‐0.1

0

0.1

0 0.5 1





inverse
target

Advances in Fluid Mechanics XI  179

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 105, © 2016 WIT Press



              
(a)   4,1  zi Ni   

   

  (b)  Ni
V

Vi 


1 given: node i of the  -plane. 

 

(c) inverse 





  1

2
1

N
ii  

 
 d inverse    Niiii  1,  

Figure 3: Backward calculation of a symmetric NACA0012 aerofoil 
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(a) z ,  Nii 1 given: z plane          (b) VVi / given: node i of the  plane 

  

(c) inverse i                                         (d) inverse
K
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(e) inverse  iii  ,  

                      
(f) surface velocity                                 (g) pressure distribution 

Figure 4: Backward calculation of a non-symmetric NACA4412 aerofoil 
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4  Inverse method 

4.1 Inverse method for a triangular aerofoil  

The velocities  31][  iV i  and the corresponding coordinates   31][  ii  are 

given; see black symbols in fig. 5. Six conditions are known and these might 
determine the triangle. The trailing edge locates at 11  , and the leading edge 3
at the origin. The following equations must be satisfied in this case: 

  2321   ,                                                    (10) 

  0coscoscos 332211   ,                              (11) 

  0sinsinsin 332211   ,                                (12) 

    
 31

2
sin2

sinsin
][

3

1

][












i
V

V i

j

j

zz

j

i

i









,                            (13) 

     ]1[11
1

]1[
,Re  

  iel ,                                      (14) 

      ]2[211
2

2

1 ,Re  


  ii elel ,                            (15) 

     ]3[33
3

]3[
,Re  

  iel ,                                     (16) 

where 

    







dKl
j

i

j

j
i 



 2

sin2,
3

1

2 .                           (17) 

The eight unknowns ,,,,,,, 2132 ]3[]2[]1[
  and z can be varied to satisfy 

the above eight eqns (10)–(17), simultaneously. The initial values can be chosen 
as 1K  and 0 . The constants K  and  are varied properly to adjust the chord 
length and its inclination, see fig. 5(b). Spreadsheet solver function is very useful 
for this problem. The angle 1 can be set 01  , but 3 is not an independent 

variable due to eqn (10). The angle of attack  is given by   z [2]. 

4.2 Inverse method by panel average velocity for a triangular aerofoil 

The panel average velocities  31  iVi and the coordinates in fig. 6 become [2] 
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(a) z-plane                (b)  -plane: scaled by iKeA   

            
(c) velocity                                            (d) pressure 

Figure 5: Triangular aerofoil ( 8 ,    5% thickness at 0.3).   

‐2

‐1

0

1

2

‐2 ‐1 0 1 2

U_inf

z

x

y



 



0

0.05

0 0.5 1










1(=0)

2











3
[1][2]

[3]

‐1

0

1

2

0 0.5 1



V
/V
_i
n
f

[1]

[2]

[3]
‐1

0

1

2

0 0.5 1



‐C
p

‐0.2

‐0.1

0

0.1

0.2

‐3 ‐2 ‐1 0 1

















Advances in Fluid Mechanics XI  183

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 105, © 2016 WIT Press



       
                    (a) 0,1  K                      (b) scaled by iKeA   

Figure 6: Panel average velocity of the triangular aerofoil in fig. 5. 

     For computational simplicity, the average velocity iV is given at i  , i.e., at 

the very beginning of the panel i , not at the middle of the panel. Equation (19) is 
a given constant, and therefore five conditions are given altogether, eqn (18) and 
eqns (20) and (21). The five unknowns ,,,, 2132  and z are varied by the 

solver function again. The constants K and  can be determined from the chord 
length and its inclination, see fig. 5(b) and fig. 6. 

The geometrical requirement to form a closed triangle becomes 

   0
3

1




ii
i

i

el  .    (22)  

Equations (20) and (21) can be replaced by eqn (22). 

4.3 Inverse method by panel average velocity for an aerofoil 

A polygonal aerofoil is a natural extension of a triangular aerofoil. The panel 
average velocities  1,1  iii NiV   and their lateral coordinates 
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a given constant, and effective conditions become 12 N . The first angle can be 

set 1 0,   and one of  1 ,i i N    for example 1,  is not independent. The

12 N unknowns NN  ,...,,,,...,, 3232 and z  must be determined. 

     The following equation is applied to form a closed polygon: 
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     So another two necessary conditions are given by eqn (23). As to the two 
unknowns K and , their values can be determined from the chord length and its 
inclination. 
     Small deviations from the known answers are given to get the final solution. 
The concept is tested in this manner. Figure 7(a) shows trial initial conditions. The 
target aerofoil is shown in fig. 7(b). 

 
(a) initial configuration   ii           (b) solution   midmid ii    

Figure 7: NACA4412 aerofoil  0 . 
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5 Concluding remarks 

A novel inverse Schwartz–Christoffel panel method is proposed. First the 
backward calculation is conducted from the known solutions. A basic flow in 
the original z-plane and discrete velocities in the physical plane are given. 
Simultaneous linear equations of the panel turning angle ratio are derived from the 
analytical formula of the velocity on a panel collocation point. The panel turning 
angle ratio is inversely calculated and construct a target aerofoil. Several 
illustrative examples are given from known solutions. The present inverse method 
is then introduced where velocity and/or pressure are given at known lateral 
coordinates. A triangular aerofoil is a test case and this novel inverse method is 
applied to a NACA aerofoil to show the concept. 
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