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Abstract

In this work, we analyze the shoaling of linear long water waves generated by
a submerged breakwater composed of wavy surfaces. The undulating surfaces
are described by sinusoidal profiles. The mathematical model is expressed in its
dimensionless version. The effects of two different geometric parameters – the
amplitude of the wavy surfaces and the submerged length of the breakwater –
on the free surface elevation is analyzed. The wavy surfaces of the breakwater
generate larger values of the wave amplitude than those obtained for breakwaters
with flat surfaces. The asymptotic solution is compared with a numerical solution
and the results are in good agreement. The results are presented for breakwaters
with number of undulations of m = n(= 1, 3). The present theory provides basis
for comparison with other approximate theories based on shallow water flows and
serves as a prelude to characterize submerged breakwaters of undulating surfaces.
Keywords: submerged breakwater, shallow flow, shoaling.

1 Introduction

For floating breakwaters, the geometry that is most commonly used is that of
a rectangular prism. In this context, several relevant analytical, numerical and
experimental investigations have been performed. Some pioneering studies of the
interaction between water waves and rigid obstacles were conducted by [1–3].
Floating breakwaters have been constructed with several different geometric
configurations, such as that studied by Kanoria [4], who addressed the scattering of
surface water waves by a thick submerged rectangular wall with a gap in water of a
finite depth. Floating obstacles are also used for a different purpose as provisional
bridges, in which case they are known as pontoons. In this context, based on linear
water waves, Drimer et al. [5] proposed a simplified two-dimensional analytical
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model to study the problem of the interaction between a type of floating breakwater
and linear water waves; later, Abul-Azm and Gesraha [6] theoretically examined
the hydrodynamic properties of a long rigid floating pontoon interacting with linear
oblique waves in water of a finite arbitrary depth.

In this work, we obtain an asymptotic formula for the free water surface
elevation of one-dimensional linear long waves interacting with a wide rectangular
breakwater of wavy surfaces. The undulating surfaces are described by sinusoidal
profiles. To obtain an asymptotic solution to the governing equations in the
presence of wavy surfaces, the domain perturbation method is implemented.
Analytical results are presented to illustrate the effects of the wave characteristics
and structure parameters on the amplitude of the water waves. This mathematical
model is only valid for breakwaters with number of undulations ofm = n(= 1, 3).
An analytical solution for the velocity potential is obtained by applying a regular
perturbation technique in combination with patching boundary conditions.
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Figure 1: Side view of the physical model under study. The water wave amplitudes
Aw, where w = I , R and T , represent the amplitudes of the incident
(travelling from left to right), reflected and transmitted water waves,
respectively.

2 Formulation

Let us consider the interaction between a one-dimensional linear long water wave
propagating from left to right and a fixed, submerged, wide rectangular breakwater
with wavy surfaces. Figure 1 presents the geometric configuration to be analyzed.
In the selected Cartesian coordinate system, the positive direction of the x axis
points to the right, with the origin in the middle of the structure. The z axis points
outwards in the direction normal to the mean water level. The floating breakwater
has a width of 2l and a length Ly normal to the x − z plane, with Ly � 2l and
Ly � λ, where λ is the incident wavelength. The physical model consists of four
regions, labelled 1, 2, 3 and 4; the constant depth in regions 1 and 4 is h1, as can
be appreciated from Fig. 1. The interval in which the structure serves to define
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regions 2 and 3 is−l ≤ x ≤ l, whereas regions 1 and 4 are defined by the intervals
−∞ < x ≤ −l and l ≤ x <∞. In the physical domain, the fluid is considered to
be incompressible, inviscid and irrotational. For an irrotational flow, the velocity
components can be expressed in terms of a scalar function of the form

Φj(x, t) = Re[ψj(x)e−iωt] and Φ2(x, z, t) = Re[ψ2(x, z)e−iωt] (1)

where ψj(x) are the velocity potential on any cross section in regions j = 1, 3, 4
and ψ2(x, z) is the velocity potential in region 2, i =

√
−1, ω is the wave

frequency and Re indicates “the real part of” the expression in square brackets.

2.1 Dimensionless governing equations

In the present mathematical model we adopt the methodology and formulation
proposed by Medina-Rodrı́guez et al. [7], who analyze the hydrodynamic forces
and the reflection and transmission coefficients of linear long waves interacting
with a submerged breakwater, composed of wavy surfaces in presence of a step.
To reduce the number of combinations that can be formed based on the physical
variables, we prefer to express the governing equations in their dimensionless
forms. Therefore, we introduce the following dimensionless variables

χ1 = χ4 = kx, χ =
x

2l
, Z1 = Z4 =

z

h1
, Z2 =

z

S1
, Z3 =

z

h4
,

Dup (χ) =
Dup (x)

h4
, Dmid (χ) =

Dmid (x)

S1
, Dlow (χ) =

Dlow (x)

S1
, (2)

φ2 (χ,Z2) = −ψ2(x, z)

igAI/ω
and φj (χ) = − ψj(x)

igAI/ω
for j = 1, 3, 4

and therefore the geometric distributions of the upper and middle, which are
identified by the subscripts up and mid, respectively, follow sinusoidal profiles
of the forms

Dup(χ) = 1− ε1 sin

[
mπ

(
χ+

1

2

)]
, (3)

and

Dmid(χ) = Hmid − ε sin

[
nπ

(
χ+

1

2

)]
(4)

where k = 2π/λ is the wavenumber, Hmid = h3/S1, Hlow = h2/S1, ε1 =
Au/h4 and S1 = h1 − h3, the parameter ε = Al/S1 � 1 with Au and
Al been the physical amplitudes of the undulations. To conduct an asymptotic
analysis, we consider that the parameter ε � 1 and, in Eq. (3), the parameter
ε1 ∼ O(ε). The physical interpretation of the limit of ε � 1 is that in region
2, the amplitude Al is very small compared with the gap S1, and in region 3, the
amplitude Au is very small compared with the depth h4. Upon introducing the
dimensionless variables defined into the Laplace equation and the corresponding
kinematic boundary conditions, we obtain that the governing equations valid in the
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interval − 1
2 ≤ χ ≤

1
2 can be expressed in the following form

Γ2 ∂
2φ2

∂χ2
+
∂2φ2

∂Z2
2

= 0 for −Dlow(χ) < Z2 < −Dmid(χ) , (5)

with the boundary conditions

∂φ2

∂Z2
+ Γ2 ∂Dmid(χ)

∂χ

∂φ2

∂χ
= 0 at Z2 = −Dmid(χ) (6)

and

∂φ2

∂Z2
+ Γ2 ∂Dlow(χ)

∂χ

∂φ2

∂χ
= 0 at Z2 = −Dlow(χ) . (7)

The dimensionless shallow flow governing equations for region 3 can be written
as

d

dχ

[
Dup (χ)

dφ3 (χ)

dχ

]
+

4µ2

γ
φ3 (χ) = 0 , (8)

where Γ = S1/2l and γ = h4/h1. The free surface elevation in region 3 is given
by the following equation

η3 (χ) = φ3 (χ) . (9)

For the linear long wave approximation, the velocity potentials in regions 1
and 4 may be written in the following dimensionless form [8]:

φ1 (χ1) = ei(χ1+µ) +Re−i(χ1+µ) and φ4(χ4) = Tei(χ4−µ) (10)

respectively, where µ = kl = 2πl/λ, which represents the physical ratio between
the half-length of the structure, l, and the wavelength, λ.

The boundary conditions required to solve the system consisting of Eqs. (5)–
(10) are defined by the continuity of the pressures and mass fluxes at the interfaces
between the different regions. These boundary conditions, when expressed in their
dimensionless forms, are given as follows: at χ = −1/2,

φ1 = φ2, φ1 = φ3 , (11)∫ 0

−1

dφ1

dχ1
dZ1 =

Π1

2µ

∫ −Hmid
−Hlow

∂φ2

∂χ
dZ2 +

γ

2µ

∫ 0

−1

dφ3

dχ
dZ3 , (12)

and at χ = 1/2,
φ2 = φ4, φ3 = φ4 (13)∫ 0

−1

dφ4

dχ4
dZ4 =

Π1

2µ

∫ −Hmid
−Hlow

∂φ2

∂χ
dZ2 +

γ

2µ

∫ 0

−1

dφ3

dχ
dZ3 , (14)

where Π1 = S1/h1.
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3 Asymptotic solution for ε� 1

The velocity potentials φj , for j = 1, 2, 3, 4, and the unknown coefficients R and
T in Eq. (10) can be expressed in the form of the following regular asymptotic
expansions:

φj = φj,0 + εφj,1 + ε2φj,2 +O(ε3) for j = 1, 2, 3, 4, (15)

R = R0 + εR1 + ε2R2 +O(ε3) and T = T0 + εT1 + ε2T2 +O(ε3) . (16)

3.1 Asymptotic solution for region 2

To obtain an asymptotic solution to Eq. (5), the domain perturbation method is
used. This method provides an approximate form in which this problem can be
solved for ε � 1. The basic concept is to replace the exact boundary conditions,
Eqs. (6) and (7), with approximate boundary conditions that are asymptotically
equivalent for ε � 1 but are now applied at the coordinate surfaces defined by
Z2 = −Hmid and Z2 = −Hlow, [7,9]. The method of domain perturbations leads
to a regular expansion in the small parameter as follow

φ2 = E0 + 2F0χ+ ε

(
2ΓF0

nπ

cosh Φ̃

sinh
(
nπ
2

))−
ε2

nπΓ2F0 cosh
(

2Φ̃
)

2 sinh2
(
nπΓ

2

) sin Φ

 , (17)

where Φ(χ) = 2nπ
(
χ+ 1

2

)
and Φ̃ (χ) = nπΓ

(
Z2 + Hlow+Hmid

2

)
.

3.2 Asymptotic solution for region 3

Substituting the asymptotic expansion given in Eq. (15), for j = 3, into the linear
long wave equation given in Eq. (8) leads to the following:
for O(ε0),

d2φ3,0

dχ2
+

(2µ)
2

γ
φ3,0 = 0 ; (18)

for O(ε1),
d2φ3,1

dχ2
+

(2µ)
2

γ
φ3,1 =

d

dχ

{
sin [Φ (χ)]

dφ3,0

dχ

}
; (19)

and for O(ε2),

d2φ3,2

dχ2
+

(2µ)
2

γ
φ3,2 =

d

dχ

{
sin [Φ (χ)]

dφ3,1

∂χ

}
, (20)

where Φ(χ) = mπ
(
χ+ 1

2

)
.
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The analytical solutions to Eqs. (18)–(20) are trivial; and therefore, the velocity
potential φ3 is given by

φ3 = B0 cos (2αχ) + C0 sin (2αχ) +

ε

 B1 cos (2αχ) + C1 sin (2αχ) +

B0 [a1 sin Φ(χ) cos (2αχ) + a2 cos Φ(χ) sin (2αχ)] +

C0 [a1 sin Φ(χ) sin (2αχ)− a2 cos Φ(χ) cos (2αχ)]


+

(21)

ε2 [B2 cos (2αχ) + C2 sin (2αχ) +G(χ)] ,

where

α =
µ
√
γ
, a1 =

1

4
[
1− (mπ)2

16α2

] and a2 =
α

mπ

[
1− (mπ)2

8α2

1− (mπ)2

16α2

]
. (22)

The variable G(χ) is given in appendix A; see Eq. (29).

3.3 Asymptotic solutions for regions 1 and 4

Upon substituting the expansions given by Eqs. (15) and (16) into Eq. (10), we find
that the problem at O(ε0) for regions 1 and 4 is given by the following equations:

φ1,0 = ei(χ1+µ) +R0e
−i(χ1+µ) and φ4,0 = T0e

i(χ4−µ) ; (23)

for O(ε1),
φ1,1 = R1e

−i(χ1+µ) and φ4,1 = T1e
i(χ4−µ) (24)

and for O(ε2),

φ1,2 = R2e
−i(χ1+µ) and φ4,2 = T2e

i(χ4−µ) . (25)

The constants R0, T0, R1, T1, R2 and T2 are obtained from a system of four
equations, which is obtained by implementing the patching boundary conditions
defined in Eqs. (11)–(14). Therefore, we obtain.

R0 =
i
[
µ(γ − 1) cosα+ Π1

√
γ sinα

]
sinα

b0
and T0 =

µ
√
γ + Π1 sin 2α

b0
,

(26)
where b0 =

[
cosα− i√γ sinα

] [
µ
√
γ cosα+ {Π1 − iµ} sinα

]
. The constants

E0, F0 B0 and C0 are given in appendix A; see Eqs. (30)–(31).
For the next-order solution, O(ε1), we have four unknown constants, R1, B1,

C1 and T1; to obtain these, we use the facts that φ1 = φ3, from Eq. (11), and
φ3 = φ4, from Eq. (13). In addition, we use Eqs. (12) and (14), which leads to a
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system of four equations. Solving this system of equations, we obtain that

R1 =
θ0 + iθ1

b1
and T1 =

θ2 + iθ3

b1
, (27)

with

θ0 = γ (δ2 − δ1 cos 2α) + 2µΩ1
√
γ sin 2α ,

θ1 = δ1
√
γ sin 2α+ 2µ (Ω1 cos 2α− Ω2) ,

θ2 = γ (δ2 cos 2α− δ1) + 2µΩ2
√
γ sin 2α ,

θ3 = 2µ (Ω2 cos 2α− Ω1)− δ2
√
γ sin 2α ,

b1 = 2(1 + γ)α sin 2α+ i4µ cos 2α ,

δ1 = (mπa1 + 2a2α) (B0 cosα− C0 sinα) ,

δ2 = (−1)m (mπa1 + 2a2α) (B0 cosα+ C0 sinα) ,

Ω1 = a2 (B0 sinα+ C0 cosα)

and Ω2 = (−1)ma2 (B0 sinα− C0 cosα). The constants B1 and C1 are given in
Appendix A; see Eq. (31). In a similar manner as before, for O(ε2), we have that
the constants R2 and T2 are given by

R2 =
θ4 + iθ5

b2
and T2 =

θ6 + iθ7

b2
, (28)

with

θ4 =
√
γ (σ1 cos 2α− σ2) + q1γ sin 2α ,

θ5 =
√
γ (q1 cos 2α− q2)− θ1 sin 2α ,

θ6 =
√
γ (θ1 − σ2 cos 2α) + q2γ sin 2α ,

θ7 = σ2 sin 2α+
√
γ (q2 cos 2α− q1) ,

b2 = (1 + γ) sin 2α+ i2
√
γ cos 2α ,

σ1 =
nπΓF0Π1

µ tanh
(
nπΓ

2

) − γG′ (χ = −1/2)

2µ

and
σ2 = nπΓF0Π1

µ tanh(nπΓ
2 )
− γG′(χ=1/2)

2µ .

The constants B2 and C2 are given in Appendix A; see Eq. (31).

4 Results

In this section, analytical results are presented to illustrate the effect of different
wave characteristics and structural parameters on the free surface elevation η3(χ).
We use the following typical parameters: the water depths are h1 = 5 m, h3 = 4 m
and h4 = 1.5 m; the maximum thickness is defined by h3 − h4 = 2.5 m
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and the maximum length of the structure is 2l = 30 m; obtaining a ratio
of 2l/h1 = 6, which is of the same order of magnitude to those used by
[4, 10], and the wavelength is taken to be λ = 100 m; however, because of the
present mathematical formulation is expressed in dimensionless form, many other
representative values of the geometric parameters can be used.
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Figure 2: Free surface elevation η3(χ) for fixed values of Hlow = 5, Hmid = 4,
Γ = 0.033, Π1 = 0.2, µ = 0.5 for different values of a) ε(= 0.05, 0.1,

0.2, 0.3) withm = n = 1 and b) γ(= 0.2, 0.3, 0.4, 0.5) with m= n= 3.

In Fig. 2 is included the comparison of the asymptotic solution for the free
surface elevation η3(χ) against the numerical solution of Eq. (8) as we see the
results are in good agreement. We point out that the dependent variable in the
ordinary differential equation (8) is the dimensionless velocity potential φ3 and
once it is obtained we use Eq. (9). We do not obtain the full numerical solution
of Eq. (8); we only obtain, using the standard shooting numerical method, the
numerical solution to Eq. (8) under the assumption that the boundary conditions
are equal to the values obtained from the asymptotic solution and the integration
interval is ∆χ = 0.002.

Figure 2a shows the variation of the dimensionless free surface elevation,
which is calculated using Eq. (9), for different values of the parameter ε (=
0.05, 0.1, 0.2, 0.3) and fixed values of the parameters Hlow = 5, Hmid = 4,
µ = 0.5, γ = 0.3, Γ = 0.033, Π1 = 0.2 and m = n = 1. In this figure can be
observed that if the parameter ε increases, the free surface elevation η3(χ) slightly
increases in the interval 0 ≤ χ < 0.36 and decrease as χ → 0.5. For the three
values of ε at χ = 0.36 the height of the free surface elevation are equal. The
amplification of the waves is because of the reduction of the depth in region 3, see
Fig. 1. In Fig. 2b is shown the influence of the parameter γ(= 0.2, 0.3, 0.4, 0.5),
with m = n = 3, on the free surface elevation η3(χ), for the same fixed values
used in Fig. 2a. In this figure clearly can be appreciated that for a breakwater
located near to the water surface, γ = 0.2, the amplitude of the waves are larger
than those obtained when the breakwater is near to the bottom, γ = 0.5; however,
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at χ → 0.5 the height of η3(χ) for the three values of the parameter γ are equal.
The results shown that for small decrements of the parameter γ the height of
the free surface elevation is increased significantly, as an example, at χ = 0.15
and γ(= 0.2, 0.05) the free surface elevation takes values of η3(= 1.3, 0.6),
respectively, the first value of η3 is 2.16 times greater than the second value. The
present mathematical model is only valid for small values of the parameter ε, that
is ε� 1, the case of ε ∼ O(1) is out of the scope of the present work.

5 Conclusions

In this work, we carried out an asymptotic analysis, at up to second order in the
regular expansion, of the interaction of linear long waves with an impermeable,
fixed, submerged breakwater composed of wavy surfaces. A formula for the free
surface elevation is obtained. The validity of this mathematical formulation is
restricted to the linear long wave approximation and for the number of undulations
of the breakwaterm = n(= 1, 3). The present proposal of a submerged breakwater
with wavy surfaces constitutes a new alternative structure for the shoaling of water
waves.
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Appendix A

G(χ) = cosϕ (ν1(B0 + C0ϕ) + ν2 cos 2Φ + ν3 sin 2Φ) +

ν4 cos [Φ− ϕ] + ν5 sin [Φ− ϕ] + ν6 sinϕ2Φ + (29)

ν7 (ν10 sin [2Φ− ϕ] + ν11 cos 2Φ sinϕ) ,

where
ν1 = 4mπ

(
m2π2 − 16α2

)
(2αψ1 +mπψ2),

ν2 = 8αB0

(
m2π2 − 16α2

)
(mπψ1 + αψ2),

ν3 = 4αC0

(
16α2 −m2π2

)
(α+mπ)(ψ1 + ψ2),

ν4 = 32α2C1

(
8α2 − (mπ)2

)
, ν5 = −128α3B1mπ,

ν6 = 4αB0

(
m2π2 − 16α2

)
, ν7 = 2αC0

(
16α−m2π2

)
,

ν8 = 2mπ(2αψ1 +mπψ2), ν9 = 2(αψ1 +mπψ2),
ν10 = 2(α−mπ)(ψ1 − ψ2), and ν11 = 2(α+mπ)(ψ1 + ψ2)

B0 =
1

cosα− i√γ sinα
, C0 = − µ

µ sinα+
[
µ
√
γ cosα+ Π1 sinα

]
i

(30)
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E0 = B0 cosα and F0 = C0 sinα, B1 = γ(δ2−δ1)−2iµ(Ω1+Ω2)

4µ(i cosα+
√
γ sinα)

,

C1 = −γ(δ1+δ2)+2iµ(Ω1−Ω2)

4µ(
√
γ cosα−4i sinα)

, B2 = − q1+q2+i(σ1−σ2)

2(cos 2α−i√γ sin 2α)
and

C2 = σ1+σ2+i(q2−q1)

2(
√
γ cos 2α−i sin 2α)

,

(31)

where σ̂1 = ã− γG′(χ=−1/2)
2µ and σ̂2 = ã− γG′(χ=1/2)

2µ with ã = nπΓF0Π1

2µ tanh(nπΓ) .

Θ0 = γ (δ2 − δ1 cos 2α) + 2µΩ1
√
γ sin 2α

Θ1 = δ1
√
γ sin 2α+ 2µ (Ω1 cos 2α− Ω2)

Θ2 =
√
γ (σ̄1 cos 2α− σ̄2) + q1γ sin 2α

Θ3 =
√
γ (q1 cos 2α− q2)− σ̄1 sin 2α

Θ4 = γ (δ2 cos 2α− δ1) + 2µΩ2
√
γ sin 2α

Θ5 = 2µ (Ω2 cos 2α− Ω1)− δ2
√
γ sin 2α

Θ6 =
√
γ (σ̄1 − σ̄2 cos 2α) + q2γ sin 2α

Θ7 = σ̄2 sin 2α+
√
γ (q2 cos 2α− q1)

M0 = M1 = 2α(1 + γ) sin 2α+ 4iµ cos 2α

M1 = M3 = (1 + γ) sin 2α+ 2i cos 2α

(32)

where σ̄1 = b̃− γG′(χ=−1/2)
2µ , σ̄2 = b̃− γG′(χ=1/2)

2µ and b̃ = nπΓF0

2µHl tanh[nπΓ] .
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