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Abstract

The presence of a background magnetic field is known to have a stabilising as well
as a destabilising effect for shear flow instabilities. To explain the reason for this,
we extend the Counter-propagating Rossby Waves mechanism, well known in the
geophysical fluid dynamics community, to the magnetohydrodynamic setting. It is
demonstrated here that wave displacement leads to a magnetic field configuration
that results in an appropriate vorticity distribution, and, via the non-local velocity
field generated by the local vorticity anomalies, action-at-a-distance results in a
constructive interaction between two waves and leads to shear instability. The
existence of shear instability then rests upon whether the chosen basic state
supports such a configuration required for constructive interference.
Keywords: shear instability mechanism, magnetohydrodynamics, vorticity action-
at-a-distance.

1 Introduction

Shear flows are ubiquitous in nature, and the process of initial instability,
nonlinear development and possible transition to turbulence is relevant to, for
example, geophysical and astrophysical systems. In particular, fluids relevant to
astrophysical systems (e.g., the solar tachocline, atmospheres of hot exoplanets,
the magnetopause) are often ionised, and to describe the interaction of the fluid
with the ambient magnetic field requires, at the very least, a magnetohydrodynamic
(MHD) description. Of interest here is the physical mechanism leading to MHD
shear instabilities. The argument often invoked is that, in the presence of a
background magnetic field, the fluid instability has to bend field lines, so one
expects the presence of a magnetic field to be stabilising (e.g., [1]). This is

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 82, © 2014 WIT Press

doi:10.2495/AFM140321

Advances in Fluid Mechanics X  371



normally what is observed when the background magnetic field is uniform (e.g.,
[1–3]), however, it has been reported that a spatially varying magnetic field
can cause a destabilisation (e.g., [4–9]). To further add to the confusion, the
presence of a uniform magnetic field can destabilise some wavenumbers that are
otherwise stable in the hydrodynamic setting (e.g., [5, 6, 10]). Here, a mechanistic
interpretation is provided to unify the two observations; this interpretation is
related to the negative-energy wave resonance arguments sometimes used to
explain shear instabilities (e.g., [11]).

The Counter-propagating Rossby Waves (CRW) framework is well-known
in the geophysical fluid dynamics community and dates back to the work of
Bretherton [12] and Hoskins et al. [13], as an interpretation for baroclinic and
barotropic instability. To illustrate this mechanism, we consider the barotropic case
with the Rayleigh profile, with a pictorial schematic is given in figure 1. The idea
is that, by itself, each Rossby wave supported on the background vorticity gradient
is neutral. For the top wave, we have the relation q ∼ −ΔQη, where q is the
vorticity, ΔQ is the jump in the background vorticity (positive at the location of
the top wave), and η is the cross-stream displacement. Displacement of the material
surface results in a vorticity distribution that leads to the wave propagating against
the background flow, in this case to the left. Taking into account that ΔQ < 0 for
the bottom wave, we see that the bottom wave propagates to the right, but counter
to the background flow. The counter-propagation results in scenarios where the
waves can be held stationary against the background mean flow, resulting in phase-
locking. Further, in the presence of the other wave, the local vorticity anomalies
induce a non-local velocity field (that decays away from the source), resulting in
interaction between the two waves. This interaction helps the other maintain phase-
locking [13], and, with an appropriate phase difference, constructive interference
can result, where each wave amplifies the other’s displacement. This serves
as an explanation for modal instability in barotropic and baroclinic instability.
Details such as transient growth/non-modal instabilities, non-localised generation
of vorticity, initial value evolution of waves not in the configuration of figure 1
have also been investigated, and we refer the reader to the recent review of [14]
and references within for more details.

The scenario demonstrated in figure 1 uses the Rayleigh profile in the barotropic
setting as an illustrative example, where the waves with associated vorticity
anomalies arise from the fact that there is a gradient in the background vorticity
profile. This is of course not the only possible scenario, and it has been
demonstrated that a similar wave interpretation may be applied to stratified shear
flow instabilities. Displacement of the individual waves (gravity, Rossby or mixed)
induces a buoyancy distribution that results in an appropriate vorticity distribution
depending on the type of waves that are supported (e.g., [15, 16]). The resulting
wave interaction differs in the details, but the important point is that a schematic
similar to figure 1 holds also in the stratified setting, whether it is instability
of the Kelvin–Helmholtz type (two vorticity waves, [15]), Holmboe type (one
vorticity and one gravity wave, [15, 17]) or the Taylor–Caulfield type (two gravity
waves, [18, 19]). In particular, the background flow can be a linear shear flow, i.e.,
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Figure 1: A pictorial representation of the CRW mechanism. Mutual interaction
is via the non-local velocity field generated by the local vorticity
anomalies, resulting in phase-locking and mutual amplification. The
configuration presented here is with the optimum configuration for
growth, with an absolute phase difference of π/2 and each wave with
equal amplitude.

no background vorticity gradient, and instability of the Taylor–Caufield type can
still arise [20, 21]; see [22], [14], and references within for details.

We demonstrate here that a similar process to the stratified case occurs in the
MHD system. Displacement leads to a magnetic field configuration that results in
a vorticity distribution associated with waves that may be of Rossby, Alfvén, or
mixed type. The stabilisation or destabilisation of the presence of the background
magnetic field then rests on the ability whether waves can phase-lock and achieve
mutual amplification. For space considerations, we focus here only on rationalising
the physics associated with the wave dynamics; the details of all the associated
analysis and concrete calculations with canonical basic states will be presented
elsewhere.

2 Generation of vorticity by the Lorentz force

The two-dimensional, incompressible, homogeneous MHD equations are given by

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ 1

μ0ρ0
j∗ ×B∗, (1a)

∂B∗

∂t
+ u · ∇B∗ = B∗ · ∇u, (1b)

with ∇ · u = 0 and ∇ · B∗ = 0; j∗ = ∇×B∗ is the current. Since we assume
incompressibility, the velocity field and the magnetic field B = B∗/

√
μ0ρ0
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(where μ0 is the permeability of free-space and ρ0 is the constant density, so that
B is in units of velocity) may be written in terms of a (scalar) streamfunction ψ
and magnetic potential A, defined here as

u = ez ×∇ψ, B = ez ×∇A. (2)

Then we observe that the vorticity q and current j satisfies the relations q = ∇2ψ
and j = ∇2A. The full equations now takes the equivalent form

Dq

Dt
= ∇ · (jB),

DA

Dt
= 0, (3)

where D/Dt is the material derivative. Vorticity is now no longer materially
conserved as the Lorentz force, written in terms of a flux divergence, can generate
vorticity accordingly.

Just from looking at the form of the forcing in the vorticity equation above,
we expect immediately that both ∂(jbx)/∂x > 0 and ∂(jby)/∂y > 0 leads to
positive vorticity generation. To illustrate this, suppose we have a constant B0ex
with B0 > 0, and

j(x0, y0)ez = j0ez, j(x1, y1)ez = j1ez (4)

where j1 > j0, x1 > x0, y1 = y0. Now, in general, the Lorentz term is F = j×B,
and so, taking ez to point out of the page, the current distribution above produces
an acceleration

F (x0, y0) = F0ey, F (x1, y1) = F1ey, (5)

with F1 > F0 > 0. Since this is an acceleration increasing in x, a material line
connecting (x0, y0) and (x1, y1) is rotated anti-clockwise, i.e., we have positive
vorticity production associated with a ∂(jbx)/∂x > 0 configuration. Similarly, to
construct a ∂(jby)/∂y > 0 scenario, we take B0ey , the above current distribution
but taking x1 = x0 and y1 > y0 (together with the analogous assumptions), this
yields

F (x0, y0) = −F0ey, F (x1, y1) = −F1ey, (6)

where F1 > F0, and this may be seen to produce positive vorticity. A pictorial
representation of this is given in figure 2.

3 Interfacial wave dynamics

To demonstrate how vorticity anomalies arise from the interfacial wave modes
supported in the MHD system, we linearise the full equations about a basic state
U(y)ex and B(y)ex (and thus Q = −∂U/∂y and J = −∂B/∂y). The governing
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Figure 2: Generation of vorticity by the Lorentz force resulting from a magnetic
field configuration; see text for details.

equations are then

(
∂

∂t
+ U

∂

∂x

)
q = −∂Q

∂y

∂ψ

∂x
+B

∂j

∂x
+
∂J

∂y

∂A

∂x
, (7a)

(
∂

∂t
+ U

∂

∂x

)
A = B

∂ψ

∂x
. (7b)

Substituting for the cross-stream displacement η in equation (7b), where

v =
∂ψ

∂x
=

(
∂

∂t
+ U

∂

∂x

)
η, (8)

an integration gives the relation A = Bη (plus a possible non-advective
contribution Ã(y) that is assumed to be zero here).

For the case where the domain is periodic in x and unbounded in y, the relations
q = ∇2ψ and j = ∇2A may be formally inverted via a Green’s function; in this
case, the explicit relation is given by

(
A(y)

ψ(y)

)
= − 1

2k

∫ (
j(y′)
q(y′)

)
e−k|y−y′| dy′. (9)

With this, we suppose that U and B are piecewise-continuous at y = L, and

∂Q

∂y
= ΔQδ(y − L),

∂J

∂y
= ΔJδ(y − L). (10)

Then, assuming interfacial wave solutions of the form

q = q̂e−ikctδ(y − L), j = ĵe−ikctδ(y − L), (11)
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and observing that (ψ(L), A(L)) = (−q̂/2k,−ĵ/2k) via the inversion, the
governing set of equations then becomes, upon using the relation A = Bη,

(U − c)q̂ =
ΔQ

2k
q̂ − 2kB

(
B − ΔJ

2k

)
η (12a)

(U − c)η = − 1

2k
q̂, (12b)

where U and B are taken to be evaluated at y = L. The eigenstructure then reads
q̂± = 2k(c± − U)η±, with the dispersion relation

(c± − U) = −ΔQ

4k
±
√(

ΔQ

4k

)2

+B

(
B − ΔJ

2k

)
. (13)

We will call these waves generalised interfacial Rossby–Alfvén waves. We denote
the branches as the ‘plus’ and ‘minus’ branch depending on whether the plus or
minus sign is taken in (13); we note that the minus branch is associated with a wave
propagating counter to the background flow, and vice versa for the plus branch.

The ΔQ, B
2

and BΔJ terms in (13) are associated with the first, second and
third terms in (7a). To rationalise how these terms are associated with vorticity
anomalies, we consider how the individual components generate vorticity that can
lead to wave propagation, or, as the reader may have noticed, potentially to an
instability of the interface.

With only the ΔQ terms, we recover the Rossby modes, and propagation of
the wave from its associated vorticity anomalies are as in figure 1. For the terms
that arise from MHD effects, we first suppose we only have the contribution from
the B

2
term in the absence of the other terms, i.e., vorticity is generated by the

B(∂j/∂x) term in (7a). We first note that we recover (shear) Alfvén wave modes,
which we will call ‘pure’ Alfvén waves to distinguish these with Alfvén waves
that are supported when there is a background current gradient. Assuming for
simplicity B > 0, the relation A = Bη results in η ∼ −j since the Laplacian
operator is negative-definite. With the wave displacement as in the top panel of
figure 3, the resulting j distribution along with bx = B results in a vorticity
distribution centred at the nodes accordingly. The induced velocity acts to reduce
the wave amplitude, and to maintain the wave structure, the vorticity distribution
required should be in phase or anti-phase with the displacement, as in the bottom
two panels respectively. When the two are in phase, i.e., η ∼ q, we have a wave
propagating to the right, and when the two are in anti-phase, i.e., η ∼ −q, we have
a wave propagating to the left, relative to the background flow; this is consistent
with the eigenstructure of the plus and minus branch, with the mathematical form
given in (13).

For the B(∂A/∂x) = BΔJ(∂η/∂x) term in (7a), we neglect the B(∂j/∂x)
contribution for the moment, and note that we need to add this back on afterwards
since both are present when B > 0. As before, we have η ∼ −j, and we can have
two scenarios depending on the sign of ΔJ . When ΔJ < 0 so that BΔJ < 0,
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Figure 3: Wave propagation associated with the B(∂j/∂x) term in (7a); see text
for details.

the scenario is as in the top panel of figure 4. The resulting current distribution
generates a by distribution denoted by the black arrows, and such a configuration
generates a vorticity distribution at the nodes accordingly. Then we notice that
this is exactly like the previous case of the pure Alfvén waves in figure 3, and the
cumulative effect of the two contributions results in a faster wave propagation. All
of the schematics may be seen to be consistent with the mathematical form of the
eigenstructure and dispersion relation in (13), taking BΔJ < 0.

With ΔJ and BΔJ > 0, the situation is as depicted in the bottom panel
of figure 4, and the resulting vorticity distribution then acts to enhance the
displacement of the wave. There is competition then between the propagation
part from B(∂j/∂x) and the destabilising part from BΔJ(∂η/∂x). From the
eigenstructure, we see that the destabilising component always dominates in the
small k regime. We have a steepening of the wave whether q is in phase or
anti-phase with the displacement, and we therefore conclude that, in the small
k regime, the interface itself may be unstable even without a background flow, in a
standing wave fashion similar to the Rayleigh–Taylor instability. Since the interest
is really in shear instabilities, we do not discuss this further here, and we refer
the interested reader to the discussion in the longer version of the article to be
presented elsewhere.

4 Conclusion

Having derived and rationalised how displacement of MHD wave modes has
associated with it vorticity anomalies, via the change in the magnetic field
configuration, the presence of two or more of these neutral waves can then
lead to shear instability via vorticity inversion, action-at-a-distance and mutual
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Figure 4: Wave propagation and potential instability associated with the
B(∂A/∂x) = BΔJ(∂η/∂x) term in (7a); see text for details.

interaction. The exact details of the shear instability depends on the individual
waves types supported by the choice of the basic state, but the main point is that
these fine details are minor additions to the fundamental configuration depicted
in figure 1. At the simplest level, whether the presence of the magnetic field is
stabilising or destabilising boils down to how the set up changes phase-locking
and associated interaction of the waves.

We have focussed here on a physical explanation and rationalisation of
the relation between displacement and vorticity generation, and due to space
considerations we have omitted some finer details. Further analysis have been
carried out for two specific profiles that illustrates, (i) a case where the magnetic
field stabilises a flow that is hydrodynamically unstable, and (ii) a case where
the magnetic field destabilises a flow that is hydrodynamically stable. The role of
the pro- and counter-propagating components, the critical layer, and a comparison
of the closed form analytical solutions with the full numerical results have been
carried out; the details of these will be presented elsewhere.

A portion of this work was carried out whilst both authors were visiting the
Department of Meteorology, Stockholm University. The authorship is alphabetical.
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