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Abstract

We present results on the flow of a thin fluid layer over a rotating sphere
having a surface temperature that varies with latitude. The fluid is taken to be
viscous, incompressible and Newtonian while the flow is assumed to possess
both azimuthal and equatorial symmetry. The governing Navier–Stokes and
energy equations are formulated in terms of a stream function and vorticity.
An approximate analytical solution for the steady-state flow has been derived
and is compared with numerical solutions to the steady and unsteady governing
equations. For small Rayleigh numbers these solutions are found to be in close
agreement. However, as the Rayleigh number is increased noticeable differences
occur. A numerical solution procedure is presented along with a procedure for
obtaining an approximate analytical solution.
Keywords: Rayleigh–Bénard convection, rotation, heat transfer, shallow flow,
analytical, numerical.

1 Introduction

The flow and heat transfer from a differentially heated rotating sphere are of
interest in geophysical and meteorological applications such as weather prediction
and climate modelling. These flows are intrinsically complicated because of the
combination of differential heating, rotation and stratification of the atmosphere.
Rather than solving an ambitiously difficult problem crudely, as done by General
Circulation Models (GCMs), the aim here will be to tackle a much simpler problem
and to solve it accurately. A recent related study is that of Lewis and Langford [1]
which represents a numerical investigation into the stability of the steady-state
flow.
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2 Governing equations

By treating the atmosphere as a thin fluid layer, a simple mathematical model
governing the unsteady laminar convective flow of a viscous incompressible
dry Boussinesq fluid from a solid rotating differentially heated sphere can be
formulated. In the rotating reference frame the fluid is initially at rest and is set
into motion by buoyancy as a result of a prescribed poleward decrease in surface
temperature as well as a radial decrease in temperature as illustrated in figure 1.
The poleward decrease in surface temperature mimics solar heating and is taken to
be sinusoidal since this is consistent with the amount of solar radiation penetrating
into the surface as it tilts away from the equator. In addition, the flow is assumed
to possess both azimuthal and equatorial symmetry.

Figure 1: Flow set up.

Owing to the assumed symmetry, the governing unsteady Navier–Stokes and
energy equations can be expressed in terms of a stream function (ψ) and vorticity
(ω). The velocity components vr, vθ in the r, θ directions, respectively, are related
to the stream function through the relations:

vr =
1

r2 sin θ

∂ψ

∂θ
, vθ = − 1

r sin θ

∂ψ

∂r

In spherical coordinates (r, θ) and cast in dimensionless form the equations can be
formulated as [2]:

ω = −δD2ψ (1)

∂ω

∂t
+

δ

r2 sin θ

∂(ψ, ω)

∂(θ, r)
+ δPrRa sin θ

∂T

∂θ
+

2δω

r2 sin2 θ

(
cos θ

∂ψ

∂r
− sin θ

r

∂ψ

∂θ

)
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−
(

2δ2W

r2 sin2 θ
+

2δ2

Ro

)(
cos θ

∂W

∂r
− sin θ

r

∂W

∂θ

)
= δ2PrD2ω (2)

δ2PrD2W − ∂W

∂t
=

δ

r2 sin θ

∂(ψ,W )

∂(θ, r)
− 2δ

Ro

(
cos θ

∂ψ

∂r
− sin θ

r

∂ψ

∂θ

)
(3)

∂T

∂t
+

δ

r2 sin θ

∂(ψ, T )

∂(θ, r)
= δ2∇2T (4)

In the above t denotes time, r is the radial coordinate, and θ is the angle with
the polar axis. The flow variable W denotes the scaled zonal velocity while T
is the scaled temperature. The dimensionless parameters appearing in the above
equations include the Rayleigh number (Ra), the Rossby number (Ro), the Prandtl
number (Pr) and the shallowness parameter (δ) which are defined as follows:

Ra =
αgH3∆T

νκ
, Ro =

κ

HΩR
, Pr =

ν

κ
, δ =

H

R

Here, the fluid properties ν, κ and α represent the kinematic viscosity, thermal
diffusivity and thermal expansion coefficient, respectively, whereas g is the
acceleration due to gravity, R is the radius of the sphere, H is the thickness of the
fluid layer, ∆T is the maximum temperature difference between the surface and
the top of the fluid layer, and Ω is the rotation rate about the polar axis. In deriving
the vorticity transport equation (2) we have made the Boussinesq approximation
whereby the fluid density (ρ) varies linearly with temperature according to:

ρ = ρr[1− α(T − Tr)]

where ρr represents the reference density corresponding to temperature Tr. The
time and length are scaled as follows:

t̃→ H2

κ
t , r̃ → Rr

whereas the adopted scaling for the flow variables is given by:

(ψ̃, ω̃, W̃ , T̃ )→ (
κR2

H
ψ,
κR

H2
ω,
κR

H
W,Ta + (∆T )T )

In the above, the tilde denotes a dimensional quantity and Ta the constant ambient
temperature. Lastly, the differential operators D2,∇2 and ∂(A,B)/∂(x, y) are
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defined as follows:

D2 =
∂2

∂r2
+

1

r2
∂2

∂θ2
− cot θ

r2
∂

∂θ

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cot θ

r2
∂

∂θ

∂(A,B)

∂(x, y)
=
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x

Equations (1)–(4) are to be solved in the region:

0 ≤ θ ≤ π

2
, 1 ≤ r ≤ 1 + δ

subject to the no-slip boundary conditions given by:

ψ =
∂ψ

∂r
= W = 0 on r = 1 and r = 1 + δ

The assumed symmetry requires that we impose the following conditions at the
pole and equator:

ψ = ω = W = 0 along θ = 0 and ψ = ω =
∂W

∂θ
= 0 along θ =

π

2

We observe that the stream function is overspecified while the vorticity is
underspecified. Later we will explain how the extra conditions for the stream
function can be used to furnish the missing conditions for the vorticity. The
temperature, on the other hand, satisfies:

T = 1− γ cos2 θ on r = 1 and T = 0 on r = 1 + δ

where the parameter γ represents the ratio of the maximum difference in surface
temperature and the maximum difference in temperature between the surface and
the top of the fluid layer. The dimensionless temperature has been scaled so that the
maximum difference in temperature between the surface and the top of the fluid
layer is unity, and the constant temperature at the top of the fluid layer is zero. At
the pole (θ = 0) and the equator (θ = π/2) we apply the zero heat-flux/Neumann
condition:

∂T

∂θ
= 0 along θ = 0 and θ =

π

2

As previously mentioned, the fluid is initially taken to be at rest having a
temperature distribution given by the approximate analytical solution derived in
the next section.
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3 Analytical and numerical methods

For analytical and numerical purposes we propose a change of coordinates and
introduce (z, µ) where r = 1 + δz and µ = cos θ. This has the advantage of
mapping the computational domain to the unit square: 0 ≤ z, µ ≤ 1. On the unit
square, the transformed equations read:

δω = −D̂2ψ (5)

∂ω

∂t
+

1

(1 + δz)2
∂(ψ, ω)

∂(z, µ)
+

2ω

(1− µ2)(1 + δz)2

[
µ
∂ψ

∂z
+
δ(1− µ2)

(1 + δz)

∂ψ

∂µ

]
− 2δW

(1− µ2)(1 + δz)2

[
µ
∂W

∂z
+
δ(1− µ2)

(1 + δz)

∂W

∂µ

]
− 2δ

R0

[
µ
∂W

∂z
+
δ(1− µ2)

(1 + δz)

∂W

∂µ

]
= δPrRa(1− µ2)

∂T

∂µ
+ PrD̂2ω (6)

∂T

∂t
+

1

(1 + δz)2
∂(ψ, T )

∂(z, µ)
= ∇̂2T (7)

PrD̂2W − ∂W

∂t
=

1

(1 + δz)2
∂(ψ,W )

∂(z, µ)
− 2

R0

[
µ
∂ψ

∂z
+
δ(1− µ2)

(1 + δz)

∂ψ

∂µ

]
(8)

The transformed differential operators become:

D̂2 =
∂2

∂z2
+
δ2(1− µ2)

(1 + δz)2
∂2

∂µ2

∇̂2 =
∂2

∂z2
+

2δ

(1 + δz)

∂

∂z
− 2µδ2

(1 + δz)2
∂

∂µ
+
δ2(1− µ2)

(1 + δz)2
∂2

∂µ2

We point out that the zero heat-flux/Neumann condition becomes:

∂T

∂θ
= −

√
1− µ2

∂T

∂µ
= 0

This is problematic at the pole since the factor
√

1− µ2 = 0 when µ = 1. To
overcome this difficulty we replace this condition with

T = (1− γ)(1− z)(1− δz) + δ2T2(z, µ = 1)

at the pole, where T2 is to be defined. As we will shortly see, this condition is
consistent with the approximate analytical solution which is derived below.
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For small δ approximate analytical solutions can be constructed by expanding
the flow variables in the following series:

ψ = ψ0 + δψ1 + δ2ψ2 + · · ·

ω = ω0 + δω1 + δ2ω2 + · · ·

W = W0 + δW1 + δ2W2 + · · ·

T = T0 + δT1 + δ2T2 + · · ·

Using the above expansions it is a straight-forward exercise to show that ψ0 =
ψ1 = ω0 = W0 = W1 = 0 as well as to determine the non-zero terms
ψ2, ω1, ω2,W2, T0, T1 and T2. For the steady-state equations the approximate
solutions, correct to second order in δ, are given by:

ψs(z, µ) ≈ −2γδ2Raµ(1− µ2)F1(z)

ωs(z, µ) ≈ 2γδRaµ(1− µ2)[F1
′′(z) + δF2(z)]

Ws(z, µ) ≈ 4γδ2Ra

PrR0
µ2(1− µ2)F3(z)

Ts(z, µ) ≈ (1− γµ2)(1− z)(1− δz) + δ2T2(z, µ)

where

F1(z) =
z4

24
− z5

120
− 7z3

120
+
z2

40

F2(z) =
z4

12
− z3

6
+

z

12
− 1

60

F3(z) =
z5

120
− z6

720
− 7z4

480
+

z3

120
− z

1440

T2(z, µ) = γ(1− 3µ2)z2
(

1− z

3

)
+ (1− γµ2)z2

(
1− z2

3

)
+γ2Raµ2(1− µ2)z3F4(z)− γRa(1− 3µ2)(1− γµ2)z4F5(z) +Kz

with

F4(z) =
z4

252
− z3

36
+

41z2

600
− 3z

40
+

1

30

F5(z) =
z2

360
− z3

2520
− 7z

1200
+

1

240

K = −2

3
(1−γµ2)− 2

3
γ(1−3µ2)−γ2Raµ

2(1− µ2)

350
+γRa

(1− 3µ2)(1− γµ2)

1400

and the prime denotes differentiation with respect to z. These approximate
analytical solutions will soon be used to validate the steady-state numerical
solutions as well as the limiting unsteady numerical solutions for large t.
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Equations (5)–(8) are solved by a finite difference method where the spatial
derivatives are discretized by central differences and the time derivative by implicit
time stepping [3]. Since we are working on a unit square, we take the grid spacing
to be the same in both the z and µ directions. The corresponding steady-state
equations are solved using a similar approach. The finite difference discretization
for the steady and unsteady equations results in a system of coupled discrete
nonlinear equations. Let (ψn, ωn, Tn,Wn) denote the numerical solutions at time
tn with the initial condition at t = t0 represented by (ψ0, ω0, T 0,W 0). At each
time step, the solutions at time tn+1, namely (ψn+1, ωn+1, Tn+1,Wn+1), are
computed by solving the discrete nonlinear system using fixed point iteration
described below.

Let (ψn+1
k , ωn+1

k , Tn+1
k ,Wn+1

k ) be an approximate solution after k fixed point
iterations of (ψn+1, ωn+1, Tn+1, Wn+1). We take the initial guess to be

(ψn+1
0 , ωn+1

0 , Tn+1
0 ,Wn+1

0 ) = (ψn, ωn, Tn,Wn)

which corresponds to the solution at the previous time step. The iteration procedure
starts by solving equation (7) for Tn+1

k+1 using the known value of ψn+1
k . Similarly,

we solve equation (8) to obtain Wn+1
k+1 using the current state ψn+1

k . The boundary
conditions for these two variables are handled using a standard approach, with the
Neumann conditions being discretized along the corresponding boundaries.

The determination of ωn+1
k+1 and ψn+1

k+1 , however, requires more care. We note
that there are six boundary conditions for ψ and two boundary conditions for ω.
The stream function ψ has two boundary conditions at both z = 0 and z = 1,
while ω has none. The lack of boundary conditions at z = 0 and z = 1 leads to
an incomplete system for ω, when (5) is discretized. Various methods have been
advanced to deal with this. One involves the use of so-called integral conditions
which are explained in [4].

Our strategy for solving (5) and (6) is as follows. In the (k + 1)-th iteration, we
view (5) and (6) as a joint system, and we seek to simultaneously determine ωn+1

k+1

and ψn+1
k+1 . Let m be the number of interior grid points in the z or µ direction. For

ψ we needm2 equations because ψ = 0 on the boundary. For ω, however, we need
m2 + 2m equations because the values of ω are unknown along z = 0 and z = 1.
We have m2 equations from (6). The remaining 2m equations are inferred from
the extra boundary conditions for ψ, as follows.

We extend the grid and assume that (5) holds at z = 0 and z = 1. Adopting the
notation fi,j ≡ f(zi, µj) where zi = ih, µj = jk with h, k denoting the uniform
grid spacing in the z, µ directions, respectively, and discretizing (5) using central
differences leads to:

δωi,j = − (ψi+1,j − 2ψi,j + ψi−1,j)

h2
−
δ2(1− µ2

j )

(1 + δzi)2
(ψi,j+1 − 2ψi,j + ψi,j−1)

k2
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where in our case h = k. Using the condition ψi,j = ψi,j±1 = 0 along the
boundaries z = 0 and z = 1, the above simplifies to:

δωi,j = − (ψi+1,j + ψi−1,j)

h2
.

Along the line z = 0 the unknown ψi−1,j lies outside the domain while along
z = 1 the unknown ψi+1,j lies outside the domain. These quantities can be
eliminated by making use of the condition ∂ψ/∂z = 0 along z = 0 and z = 1
which yields ψi−1,j = ψi+1,j along these lines. Thus, the surface vorticity (i.e.
z = 0) is given by the second-order finite-difference expression

ωi,j = −2ψi+1,j

δh2

while on z = 1 the corresponding expression is

ωi,j = −2ψi−1,j
δh2

.

These expressions determine the remaining 2m equations. When put together, we
have 2m2+2m equations for the same number of unknowns. This approach results
in a system that is about four times bigger than what would have been obtained if
(ψ, ω) were decoupled. However, the system is still sparse, and can be solved
rapidly using efficient algorithms.

This completes one iteration of the fixed point method. Iterations are repeated
until convergence is reached using the stopping criterion:

||(ψn+1
k∗+1, ω

n+1
k∗+1, T

n+1
k∗+1,W

n+1
k∗+1)− (ψn+1

k∗ , ωn+1
k∗ , Tn+1

k∗ ,Wn+1
k∗ )||∞ < 10−6.

From our experience, for Ra below a critical value, it usually takes only a few
iterations (k∗ < 10) to reach this criterion. When convergence is reached, we
assign the converged values to be the solutions at the next time step, that is,

(ψn+1, ωn+1, Tn+1,Wn+1) = (ψn+1
k∗+1, ω

n+1
k∗+1, T

n+1
k∗+1,W

n+1
k∗+1) .

4 Results

Numerical solutions to the steady and unsteady equations have been obtained. In
our computations we have set γ = 0.5, Ro = 1, δ = 0.1, Pr = 0.7 while
the parameter Ra was varied. The adopted computational grid size was 80 × 80
implying a uniform grid spacing of 1/80. For the unsteady computations the
uniform time step ∆T = 0.01 was used with initial conditions W = ψ = ω = 0
and T = Ts(z, µ).

Shown in figure 2 is a contour plot of the steady-state stream function for
Ra = 1000. The plot resembles a Hadley-type meridional cell whereby warmer
air rises at the equator and sinks at the pole. Next we present the steady-state
surface vorticity forRa = 2000 shown in figure 3. Also plotted is the approximate
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Figure 2: Streamline circulation pattern.

Figure 3: Surface vorticity comparison.

analytical solution; the two solutions are clearly in close agreement. Overall,
good agreement between the steady-state and approximate analytical solutions was
found in all the flow variables for Rayleigh numbers up to about 2000. In addition,
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Figure 4: The zonal velocity distribution.

Figure 5: The temperature distribution.

the unsteady solutions converged to the steady-state solutions. A mesh plot of the
steady-state zonal velocity is illustrated in figure 4 for Ra = 2000 and reveals a
prominent peak. Based on the approximate analytical solution this peak is located
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at µ = 1/
√

2 (or θ = 45◦) at z ≈ 0.74 and corresponds to a strong westerly
flow which can be interpreted as the jet stream. Lastly, plotted in figure 5 is the
steady-state temperature distribution for Ra = 2000.

As the Rayleigh number was increased beyond 2000 we encountered difficulties
in reaching convergence in the steady-state solution. Further, the unsteady solution
began to show noticeable departures from the steady-state solution. The formation
of a small second cell near the pole started to appear in the unsteady solution which
is likely the result of an instability.

This situation bears a close resemblance to the classical Rayleigh–Bénard
convection problem [5, 6] which is well known to succumb to thermal instability.

5 Conclusions

Discussed in this work was an analytical and numerical investigation of the
flow of a thin fluid layer over a rotating sphere. Our results revealed that for
Rayleigh numbers up to about 2000 good agreement exists between the analytical
and numerical solutions. However, as the Rayleigh number is increased the flow
becomes unstable causing noticeable differences between the steady and unsteady
numerical solutions. Future work will involve theoretically predicting the onset of
instability. Additional results and plots will be discussed during the presentation.
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