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Abstract

The volume-of-fluid based numerical method of Berry et al. (J. Computational
Physics, 251, pp. 209–222, 2013), for predicting electrokinetic flow of multiphase
flow with deformable interfaces, is extended to account for the effect of interfacial
charge. The numerical representation of interfacial charge is validated using two
simple test cases. Finally, the use of the extended algorithm is demonstrated by
simulating the breakup of an unstable charged water drop in air.
Keywords: two-fluid flow, Volume of Fluid, charged interface, electrokinetic.

1 Introduction

The deformation of a drop in an electric field is a classical problem of
electrohydrodynamics, with most theoretical studies assuming variously either a
perfect dielectric or perfectly conducting drop, or the leaky dielectric model [2].
Over the last 25 years, numerical methods have been used increasingly to analyse
aspects of the problem based on such assumptions. Techniques have included the
boundary integral [3], finite element [4], front tracking [5], level-set (LS) [6], and
volume-of-fluid (VOF) [7] methods.

The above models assume uniform permittivity and conductance within each
fluid phase (drop fluid and surrounding fluid) so that all electyrohydrodynamic
coupling occurs at the interface. However, in electrolytes, the ions in solution
redistribute under the action of an electric field, resulting in a non-uniform
charge distribution (and hence non-uniform conductance) within the bulk of each
fluid. This electrokinetic behaviour due to mobile charge carriers was studied
analytically by Zholkovskij et al. [8] for small drop deformation. Numerical
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modelling was extended by López-Herrera et al. [9] using a VOF method to
include spatially varying charge and conductivity; however, the conductivity
distribution required specification because the transport of individual species of
charge carriers was not accounted for.

Recently, the authors developed a new numerical algorithm for calculating
electrokinetic flow with fluid/fluid interfaces (Berry et al. [1]) that allows for
the coupled calculation of convective, conductive and diffusive ion transport, and
electrical potential distribution. Because the transport of individual ion species
(charge carriers) is accounted for, the conductivity distribution is determined as
part of the calculation. The new algorithm is based on a combined level-set,
volume-of-fluid method [10].

Although the authors’ new method [1] extends the modelling of electrohydro-
dynamic flow to include electrokinetic flow, the new procedure does not explic-
itly address situations in which the fluid/fluid interface is charged. Accounting
for interface charge presents numerical challenges because of the associated jump
in the electric displacement at the deforming interface. The aim of this paper is
to extend the authors’ algorithm to allow for interfacial charge, and to verify the
numerical accuracy of its representation for drops and planar interfaces using test
problems.

2 Formulation

Consider two immiscible Newtonian fluids with interfacial tension γ, comprising
an electrolyte solution in contact with a fluid that contains no ions, where the
interface carries charge density q that is taken to be uniform. The two fluids are
termed the discrete phase and the continuous phase (e.g. a drop of electrolyte
immersed in oil or in air, or conversely). The discrete and continuous phases are
denoted by subscripts d and c, respectively. We further assume that the electrolyte
contains symmetric cations and anions, denoted by + and − respectively, with
equal diffusivities D+ = D− = D and valencies z+ = −z− = z. The
phases are assumed to have uniform viscosities µ(d,c), densities ρ(d,c) and relative
permittivities ε(d,c). A reference concentration (number density) of ions is denoted
by n0, and is taken equal to the geometric mean of the ion concentrations [11]. The
effect of gravity is ignored as is appropriate when the densities of the two fluids
are closely matched, or when the typical length scale is very small (e.g. order of
micrometers).

In terms of dimensionless variables, the governing equations for flow in a VOF-
based formulation are [1]

∂ρv

∂t
+∇· (ρvv) = −∇P +

1

Re
∇·τ +

1

We
Fs +

CaE
We
∇·τm (1)

∇·v = 0 (2)

∂φ

∂t
+∇· (vφ) = 0 (3)
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where

τm = εEE− 1

2
ε(E ·E)I (4)

E = −∇U (5)

The corresponding VOF-based equations for the electric field and ion transport
are [1]

∇· (εE) =
1

2
K2(n+ − n−) + Sq (6)

∂φn±
∂t

+∇·
(
φn±

(
v ± 1

Pe
E

))
=

1

Pe
∇· (φ∇n±) (7)

Here v is the fluid velocity vector, P denotes pressure, τ is the viscous stress
tensor, Fs is the surface force arising from interfacial tension, τm denotes the
Maxwell stress tensor associated with electrical forces on the fluid, φ is the
fractional volume function for the discrete phase, E is the electric field, U is the
electrical potential, and n± denotes the number densities of cations and anions.
The source term Sq in eqn. (6) for the electric field denotes the contribution to the
total charge per unit volume that arises from the interfacial charge density q.

The velocity has been non-dimensionalised according to a characteristic
velocity scale V that will depend on the physical system under consideration.
Length, time, number density of cations and anions, and electric field, have been
scaled according to drop radius R, R/V , n0 and Eref = kT/zeR, respectively,
where k is the Boltzmann constant, T is the absolute temperature and e denotes the
elementary charge. In addition, the density, viscosity and permittivity are scaled
using corresponding fluid properties of the electrolyte phase, so that scaled values
are unity within the electrolyte phase and a ratio of values in the other phase.

The resulting dimensionless groups in the governing equations are

Re =
ρrefV R

µref
, We =

ρrefV
2R

γ
, CaE =

ε0εrefE
2
refR

γ
(8)

Pe =
V R

Dref
, K2 =

2z2e2n0R
2

ε0εrefkT
(9)

where subscript ‘ref’ denotes a reference value and ε0 is the permittivity of free
space. The groups Re, We, Pe, and CaE are the Reynolds, Weber, Peclet, and
electric capillary numbers, respectively, while K is the dimensionless inverse
Debye length.

The source term Sq representing interfacial charge in eqn. (6) is absent in the
formulation of Berry et al. [1] since they implicitly assume that the interface itself
carries no charge. In order to use the numerical algorithm of Berry et al. [1] to
solve the governing equations (1)–(7), a suitable representation for Sq is required.

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 82, © 2014 WIT Press

Advances in Fluid Mechanics X  205



3 Approximating the electric field equation

The electric field is determined by solving eqn. (6) which, in terms of the electrical
potential U , is the Poisson equation

∇· (ε∇U) = −1

2
K2(n+ − n−)− Sq (10)

A simple representation of Sq is

Sq = SIδI (11)

where δI = |∇φ| is the Dirac delta function centred at the interface and

SI =
zeRq

ε0εrefkT
(12)

is the dimensionless interfacial charge density. Although the electrical potential
(U ) is continuous at the interface, the potential gradient (electric field) is
discontinuous there in general. Experience shows that the delta function
formulation of Sq predicts a non-physical step change in U at the interface in
the presence of interfacial charge, except when the permittivities of the two phases
are equal.

In VOF or LS methods the location of the interface is not known precisely. If the
interface location was known then the exact equations for the electrical potential
would consist of eqn. (10) with Sq = 0 in each phase separately, linked at the
interface by the following condition on the electrical displacement:

‖−ε∇U‖ · n̂ = SI (13)

where ‖·‖ indicates a jump across the interface and n̂ denotes a unit normal to the
interface pointing opposite to the direction of the jump. A numerical method that
is designed to solve problems such as this, incorporating the jump condition (13)
and a discontinuity in ε, has been developed by Liu et al. [12]. The technique
involves approximating gradients at points that are adjacent to the interface,
by smoothly extending the solution in one phase to fictitious values across the
interface. Implementation of the method of Liu et al. [12] yields a representation
of Sq that differs from the delta function formulation (11), and it will be shown
that the corresponding solution does not suffer from a non-physical jump in U at
the interface that characterises the use of eqn. (11).

Applying the method of Liu et al. [12] yields the following expression for Sq

at cell-centred nodal points with coordinates (xi, yj) on a uniform rectangular
computational grid with mesh spacing ∆x and ∆y in the x and y coordinates,
respectively:

Sq = −(FL + FR + FB + FT ) (14)

where FL is non-zero when the interface lies between xi−1 and xi, and FR is
non-zero when the interface lies between xi and xi+1. Likewise, FB and FT are
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non-zero when the interface is located between yj−1 and yj , and between yj and
yj+1, respectively. At all other locations, FL, FR, FB , FT are zero. The non-zero
values of FL and FR are given by:

FL =
εi− 1

2 ,j
SI n̂

(1)θi−1,j

εd∆x
(15)

when (xi−1, yj) lies within the discrete phase (fig. 1(a));

FL = −
εi− 1

2 ,j
SI n̂

(1)θi−1,j

εc∆x
(16)

when (xi, yj) lies within the discrete phase (fig. 1(b));

FR =
εi+ 1

2 ,j
SI n̂

(1)θi+1,j

εc∆x
(17)

when (xi, yj) lies within the discrete phase (fig. 1(c));

FR = −
εi+ 1

2 ,j
SI n̂

(1)θi+1,j

εd∆x
(18)

when (xi+1, yj) lies within the discrete phase (fig. 1(d)).
Here θi±1,j∆x is the distance along the x-coordinate between (xi±1, yj) and

the interface, n̂(1) is the x-component of the unit normal (n̂) to the interface
directed into the discrete phase, and εi± 1

2 ,j
is a θ-weighted harmonic average

of ε evaluated at the mesh cell face between the nodes (xi±1, yj) and (xi, yj)
Analogous expressions apply for FB and FT .

Liu et al. [12] use a level-set function to represent θi±1,j and n̂, and to perform
the averaging of ε to obtain εi± 1

2 ,j
. Here we approximate these instead using the

VOF volume function φ. In that case

n̂ =
∇φ
|∇φ|

(19)

Furthermore, when discrete phase is to the left of the interface (figs. 1(a), 1(c)), we
set

θi−1,j = φi− 1
2 ,j

(20)

θi+1,j = 1− φi+ 1
2 ,j

(21)

and when the discrete phase is on the right of the interface (figs. 1(b), 1(d)),

θi−1,j = 1− φi− 1
2 ,j

(22)

θi+1,j = φi+ 1
2 ,j

(23)

where φi± 1
2 ,j

denotes the discrete phase volume fraction between nodes (xi±1, yj)
and (xi, yj). The component n̂(1) of the unit normal to the interface is
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approximated by a linearly interpolated value n̂(1)
i± 1

2 ,j
at the mesh cell face between

the nodes (xi±1, yj) and (xi, yj). The interpolation used here to obtain εi± 1
2 ,j

using
the VOF volume function, that corresponds to the treatment of Liu et al. [12], is the
volume fraction weighted harmonic mean interpolation used by Berry et al. [1].

• •• •

•• ••

(a)

(b)

• •• •

•• ••

(c)

(d)

Figure 1: Schematics of an interface segment located (a, b) between nodal points
xi−1 and xi and (c,d) between nodal points xi and xi+1. The shaded
region denotes drop fluid.

4 Results and discussion

We now consider two test cases chosen to test the extended algorithm when
interfacial charge is represented by eqn. (11) (delta function method) or by
eqn. (14) (method adapted from Liu et al. [12]). The complete set of governing
equations (1)–(7) is solved numerically, even in cases where there should be no
fluid motion. Calculations are performed on a two-dimensional uniform staggered
grid. Further details of the numerical procedure are given in Berry et al. [1].

4.1 Test case: uniform layer of electrolyte

This case concerns a stationary uniform layer of electrolyte (taken to be the
discrete phase) which is in contact with a solid wall on one side at x = 0, and a
gas (e.g. air) on the other side at x = 1 (fig. 2). The wall is assumed to be charged
with a dimensionless surface charge density Sw = 4, and the corresponding
interface surface charge density is taken to be SI = −4. The definition of Sw

has the same form as for SI (eqn. (12)), with the dimensional charge density on
the wall replacing the interfacial quantity q. The permittivity ratio is specified
to be εc/εd = 0.0125, and the dimensionless inverse Debye length is taken to
be K = 2. Other parameters necessary to solve the complete set of governing
equations (1 - 7) are specified as follows: density ratio ρc/ρd = 0.001, viscosity
ratio µc/µd = 0.003, Re = 1.0, We = 1.0, Pe = 1000, CaE = 0.468× 10−3.

For a symmetric 1:1 electrolyte, the exact steady state governing equations
for the electrical potential take the standard Poisson-Boltzmann form in one
dimension:

d2Ud

dx2
= K2 sinhUd, x ∈ (0, 1) (24)
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d2Uc

dx2
= 0, x ∈ (1,∞) (25)

with boundary conditions

dUd

dx

∣∣∣∣
x=0

= −Sw,
dUc

dx

∣∣∣∣
x→∞

= 0 (26)

Ud|x=1 = Uc|x=1 (27)

εd
dUd

dx

∣∣∣∣
x=1

− εc
dUc

dx

∣∣∣∣
x=1

= SI (28)

The ion concentrations are

n± =

{
exp(∓U), if x ≤ 1,

0, if x > 1
(29)

High-resolution solutions (1000 points per unit length) to the one dimensional
eqns. (24)–(29) are referred to as ‘exact’ solutions.

fig. 2 compares numerical solutions for this case, obtained using the method
of Berry et al. [1], extended to include interface charge based on the delta
function method (eqn. (11)) or the method adapted from Liu et al. [12] (eqn. 14)).
Calculations are performed using 32 mesh cells per unit length with a computation
domain extending to 2 dimensionless lengths transversely. The condition at infinity
(zero potential gradient) is applied at x = 2, and the ion concentrations at t = 0 are
set according to the exact solution. Numerical timestepping proceeds until steady
state is achieved. The results are also compared with the exact solutions. fig. 2
shows that the method adapted from Liu et al. [12] accurately predicts the electrical
potential variation. In contrast, the delta function method exhibits an unphysical
step-change in the potential at the interface, although it correctly predicts the
potential in the electrolyte (x < 1), and correctly predicts zero electrical field
(potential gradient) in the gas away from the interface. Predictions of both
methods and the exact solution for the positive and negative ion concentrations
are effectively coincident (fig. 2b). No results for ion concentrations are shown for
x > 1 because there are no ions in the gas phase. Both methods predict that the
fluids remain stationary at all times, consistent with the exact solution.

4.2 Test case: two dimensional drop of electrolyte

In this case, we consider a stationary two dimensional drop of electrolyte
(discrete phase) with radius R = 1, suspended in perfect dielectric liquid. The
dimensionless surface charge density on the drop-liquid interface is taken to be
SI = −4, the permittivity ratio is specified to be εc/εd = 0.025, and the
dimensionless inverse Debye length is taken to be K = 5. Other parameters
necessary to solve the complete set of governing equations (1 - 7) are specified
as follows: density ratio ρc/ρd = 1.0, viscosity ratio µc/µd = 3, Re = 0.01,
We = 2.0, Pe = 10, CaE = 9.36.
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Electrolyte Gas

Charged
wall

Charged
interface

(a) (b)

Figure 2: Test case: stationary uniform layer of electrolyte. Comparison of
methods for representing interfacial charge (eqns. 11 and 14) when
predicting (a) electrical potential and (b) ion concentrations at steady
state. Here Sw = 4, SI = −4, εc/εd = 0.0125, K = 2.

The exact steady state governing equations for the electrical potential and ion
concentrations in terms of the planar polar radius r, when the drop consists of a 1:1
electrolyte, are similar to eqns. (24)–(29) but with r replacing x, Sw set to zero,
and 1

r
∂
∂r

(
r ∂U∂r

)
replacing d2U

dx2 . We consider the circumstance in which the total
charge due to ions inside the drop is equal and opposite to the total charge on the
drop interface (i.e. overall electro-neutrality). A simple application of Gauss’ law
demonstrates that the potential must be constant outside the drop in this case.

For the numerical solution, we set the electro-neutrality by choosing the initial
ion concentrations in the drop to be the average values in the drop evaluated from
the exact solution (eqn. (29)). Since the drop is stationary and the interfacial area is
not changing, this electro-neutrality condition should be satisfied at all later times
for fixed interfacial charge density SI .

The numerical solutions based on the two methods of representing surface
charge are now compared in fig. 3 for this two dimensional drop case. Results are
presented for electrical potential and ion concentration along the horizontal axis
through the centre of the drop. The results are almost the same along the vertical
axis, as is expected. The computation domain is a symmetric half-plane of width
4 and length 8 with the drop of radius equal to 1 located centrally (drop centre at
(0, 4)). Again calculations are performed using 32 mesh cells per unit length. Zero
potential gradient is specified at the boundaries of the computational domain.
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Electrolyte Perfect dielectric
liquid

Charged
interface

(a) (b)

x

Figure 3: Test case: stationary planar drop of electrolyte. Comparison of methods
for representing interfacial charge (eqns. 11 and 14) when predicting
(a) electrical potential and (b) ion concentrations at t = 1 and t = 2
for the delta function method, and at steady state for the other method.
Here SI = −4, εc/εd = 0.025, K = 5.

As in the previous test case, the method adapted from Liu et al. [12] (eqn. (14))
for describing the interfacial charge, accurately predicts the electrical potential
distribution, both inside and outside the drop, when compared with the exact
solution. The delta function method is once more shown to exhibit an unphysical
jump in the potential at the interface, while accurately predicting the potential
variation inside the drop. However, in this case, the delta function method does
not reproduce the correct (zero) potential gradient outside the drop. This deviation
from the exact solution increases with time, as is shown by the results for t = 1 and
t = 2, so that the delta function method never achieves a steady result throughout
the domain. The reason for this error is explained below.

The unphysical step change in potential predicted at the interface by the delta
function method results in a spike in the calculated electrical field there. This
enhances the generation of unrealistic parasitic currents (not shown) that can occur
near a curved interface when using LS and VOF methods. These exaggerated
parasitic currents cause minute corrugations in the interface that grow with time, so
that the calculated interfacial area grows with time. Consequently, the condition of
overall electro-neutrality becomes increasingly in error as the calculation with the
delta function method proceeds for fixed interfacial charge density SI , resulting in
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a non-uniform potential variation outside the drop that becomes more pronounced
with time. This error does not occur with the method based on Liu et al. [12].

As for the previous test case, both methods accurately predict the ion
concentrations when compared with the exact solution (fig. 3b). No ion
concentrations are shown for x > 1 because there are no ions outside the drop.

4.3 Illustrative example

The above tests show that representing Sq using the procedure based on Liu
et al. [12] can satisfactorily account for the effect of interfacial charge. We now
illustrate the application of this method to the more physically interesting problem
of breakup of a water drop in air when the chargeQ on the drop surface exceeds the
Rayleigh limiting value for stability, Qc = 8π

√
γε0R3 [2]. Here we assume that

the drop surface carries a fixed charge Q = 1.05Qc, and that the drop contains no
ions. As the unstable drop deforms, its area changes, thus changing the interfacial
charge density. Charge migration on the drop surface is ignored, so that SI remains
uniform but changing with time. The physical parameters of the problem are
ρc/ρd = 0.001, µc/µd = 0.018, εc/εd = 0.0125. The velocity scale is chosen
so that We = 1.0 in which case Re = 27.4 and CaE = 0.62 × 10−6, based on a
spherical droplet of 10 micrometre radius.

t = 0 t = 500 t = 800 t = 1040

Figure 4: Time evolution of an initially deformed, charged unstable water drop
in air. Interfacial charge is 1.05 times the critical Rayleigh value for
instability. Here ρc/ρd = 0.001, µc/µd = 0.018, εc/εd = 0.0125,
We = 1.0, Re = 27.4, CaE = 0.62× 10−6.

Calculation is performed for a drop that is initially deformed (fig. 4) on a grid
having 32 mesh cells per unit length in a computation domain of radius equal to
4 drop radii and length of 16 drop radii. Refining the grid to 64 cells per unit
length produced negligible change in the results. The electric field at points on the
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domain external boundaries is chosen to be proportional to the inverse square of the
spherical polar radius, consistent with the analytical solution outside a spherical
drop having uniform potential. The constant of proportionality is chosen to satisfy
Gauss’ law throughout the domain. For this example only, the numerical solution
of the momentum eqn. (1) is performed with a modified pressure that incorporates
an additional term proportional to 1

2εE
2 deriving from the second term in eqn. (4).

The drop evolution shown in fig. 4 is similar to that shown in experimental images
of a related case [13]. Detailed investigation of this and similar problems using
our numerical methods, including an exploration of the validity of the modified
pressure treatment, will be the subject of future work.

5 Conclusion

The algorithm of Berry et al. [1] for calculating electrokinetic multiphase flow
with interfaces is extended here to include the effect of interfacial charge. Two
numerical representations of the interfacial charge are compared. One uses the
Dirac delta function centred at the interface, and the other is based on a technique
developed by Liu et al. [12] for solving Poisson’s equation with jump conditions at
an interface. Two test problems (a uniform electrolyte layer and a stationary planar
drop of electrolyte) are considered. It is shown that the method derived from Liu
et al. [12] gives accurate predictions, whereas the delta function method exhibits
an unphysical step-change in the electrical potential at the interface Finally, the
extended algorithm of Berry et al. [1] is applied to the breakup of an unstable
charged water drop in air. Predictions for this illustrative case are consistent with
related experimental data [13].
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