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Abstract 

Influence of wall oscillation on laminar-turbulent transition of the plane 
Poiseuille flow is investigated analytically and numerically. For the analytical 
approach, the Floquet theory using a time-dependent Orr-Sommerfeld equation 
is employed to estimate the fundamental aspect of this flow. The velocity 
profiles for the analysis are assumed as the superposition of the plane Poiseuille 
flow and the Stokes layer. Also the collocation method is used in the wall-
normal direction for making the monodromy matrix. Depending on the 
parameters, namely frequencyΩand amplitude Uw of the wall-oscillation, there 
is the stable region inΩ-Uw plane even though the Reynolds number is of 
supercritical. Direct numerical simulation (DNS) based on the Fourier spectral 
method is also employed to confirm the analytical results and to clear the flow 
structures. The results by DNS show good agreement with the Floquet analysis 
and also reveal that the vortex structures in the vicinity of the walls are strongly 
affected by the wall oscillation. 
Keywords:  plane Poiseuille flow, wall oscillation, Floquet analysis, DNS. 

1 Introduction 

The flow in the nature is basically turbulent and chaotic, and it usually doesn’t 
have a regular structure [1, 2]. However, it is well known that the oscillating 
flow or pulsatile flow show some interesting features. For example, the blood 
flow in arteries demonstrate the drag reduction [3]. For the oscillating flow, the 
plane Poiseuille flow with spanwise wall oscillation also shows the drag 
reduction [4] and Quadrio and Ricco [5] quantity estimated more than 40%. It is 
thought that this phenomenon is concerned with the existence of the streak 
structures [6, 7]. 
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     On the other hand, the plane Poiseuille flow with longitudinal wall oscillation 
is also investigated by many researchers because this flow is basically two-
dimensional and it seems that the analytical approach is more suitable [8–12]. 
Most general way to deal this flow is to assume as a combination of the plane 
Poiseuille flow with the Stokes layer. Some previous study investigated this 
modified flow and discussed the characteristics of the stability. However, in 
contrast to the flow with spanwise oscillation, the numerical studies are not many. 
Thus the present study aims to analyse the flow with spanwise oscillation by 
direct numerical simulation (DNS) comparing with the linear stability analysis. 
     In section 2, the modified flow and the parameters are shown. In section 3, 
the basic idea of linear stability analysis is explained. In the present study, the 
Floquet method is employed because of periodicity of the modified flow. The 
collocation method is also used to construct the mathematical formulation. 
The numerical scheme of DNS is given in section 4. The results obtained from 
both approaches are shown in section 5 and the conclusion is given in section 6. 

2 Modified flow 

In the present study, the flow dealt here is described by a linear superposition of 
the plane Poiseuille flow with the Stokes layer. The distance between the walls is 
2h, and the amplitude and frequency of the wall oscillation are Uw and Ω. The 
parameters governing this modified flow are then Uw and Ω, and the Reynolds 
number Re defined as h Umax ν

-1, where Umax is the maximum velocity of the 
mean flow in the absence of wall oscillation, ν is the kinematic viscosity. The 
schematic view of the flow field is given in Figure 1.  
 
 
 
 
 
 
 
 
 

Figure 1: The schematic view of the flow field. 

     This flow might be an exact solution because the superimposed flow are also 
the exact solution of the linear equation derived from the Navier-Stokes equation. 
The mean flow is given as Equation (1). 
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3 Linear stability analysis 

In the present study, small disturbance u’ existing in the mean flow is assumed 
as Equation (2). 

u′(x, y, z,t)  =uˆ( y,t)exp[i( αx  γ +z)] , (2) 

here αand γare the wavenumber in x, z direction, respectively. The time-
dependent N-S equation is obtained by substituting Equation (2) into the 
linearized disturbance equation, and shown as follows. 
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     With expansion in the y direction using the Chebyshev spectral collocation 
method, the above equation can be written as 
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here Dij
(2) is the differential matrix and the collocation points yi is 
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 Since Equation (4) can be rewritten as 

)()()( tFtGtF
dt

d
 , (6) 

the system is described by the Floquet exponents 

F
T

Q ln
1

 . (7) 

When the eigenvalue μof the matrix Q is positive, the system is unstable. 

4 DNS analysis 

In the present study, the resolution is 64× 128× 129 for 4π× 2× 2π
numerical space. The flow filed consists of the mean flow U(y,t) and the small 
disturbance u=u(u,v,w). Then u is calculated the following equation 
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with the incompressible condition of 

0 u . (9) 

     Here ex denotes the unit vector in x direction. The velocity u is expanded by 
the Fourier series for x and z direction, on the Chebyshev collocation points of yi. 

)](exp[),,,(~),,,( zxitytzyx  uu . (10) 

Thus, energy norm for the Fourier modes per unit mass is defined as follows. 
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5 Results 

5.1 Linear stability analysis 

For convenience, Reynolds number is fixed to 10,000, hereafter. Under the 
present definition of Reynolds number, the critical value is about 5,772 for non-
oscillating plane Poiseuille flow.  
     The eigenvalue of Floquet exponent is obtained from Equation (7). The 
matrix F is numerically integrated Equation 6 during the period T. For this 
integrated process, the Cranc-Nicorson method [13] is employed. 
     First, the Floquet exponent for the case of (α ,γ )=(1.0. 0.0) without 
oscillation is checked by the comparison with Orszag [1]. Table 1 shows good 
agreement. 
 

Table 1:  Comparison of the Floquet exponent for the case of Re=10,000,  
(α,γ)=(1.0. 0.0). 

Floquet exponent μ(present) 0.37397e-02 

Eigenvalue ωi (Orszag [1]) 0.37396e-02 

 
 
     Then, the Floquet exponent is calculated for various set of (Uw,Ω). Using 
these results, the contour of the Floquet exponent for the case of (α,γ)=(1.0. 
0.0) is shown Figure 2. It can be seen that the stability area exists even though 
the Reynolds number exceeds the critical value. 
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Figure 2: Contour of the Floquet exponent for the case of (α,γ)=(1.0. 0.0). 

5.2 DNS analysis 

Figure 3 shows the variation of the energy for each Fourier mode for the case of 
(Uw,Ω )=(0.0. 0.0), namely non-oscillating case. At t=0, the level of initial 
disturbances is quite small, and then each Fourier mode grows with t. It is found 
 

 

Figure 3: Variation of energy for each Fourier modes for the case of without 
oscillation. 
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that the Tollmein-Schlighting (TS) wave, (α,γ)=(1.0. 0.0), is dominant and 
finally the flow transits to the turbulence. 
     Hereafter, TS mode is added as an initial disturbance in order to save the 
calculation cost. The few examples of the numerical results are shown in Figure 
4. Figure 4 (a) corresponds to non-oscillating case. Comparing with the non-
oscillating case, it can be seen that there are accelerated, changeless, decelerated 
cases depending on the parameters. The wavy structure agrees with the period of 
the wall-oscillation. 
     Roughly speaking, the feature mentioned above is agrees with the result 
obtained from the Floquet analysis summarized in Figure 2. These results 
suggest that the transition phenomena can be inferred from the behaviour of the 
TS wave.  

(a) (Uw,Ω)=(0.0. 0.0)   (b) (Uw,Ω)=(0.3. 0.05) 

(c) (Uw,Ω)=(0.2. 0.25)      (d) (Uw,Ω)=(0.3. 0.15) 

Figure 4: Variation of energy for each Fourier modes for the case of 
(a) (Uw,Ω)=(0.0. 0.0), (b) (0.3. 0.05), (c) (0.2. 0.25), (d) (0.3. 0.15). 
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     Figure 5 shows the contour of the vorticity just before the transition for the 
case of non-oscillating case. It can be seen that the flow is complicated though 
the Lambda-like structure exists at near the wall. On the other hand, for the 
accelerated case, the streamwise structures periodically distributed are observed. 
It is conceivable that there is some correlation between these structures and the 
rapid transition. 
 

 

 
 

Figure 5: Contour of the vorticity at just before the transition for the case of 
(a) (Uw,Ω)=(0.0. 0.0), (b) (0.3. 0.05). 

(a) 

(b) 

z 

z 

Y 

Y 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 82, © 2014 WIT Press

Advances in Fluid Mechanics X  185



6 Conclusion 

Influence of wall oscillation on laminar-turbulent transition of the plane 
Poiseuille flow is investigated analytically and numerically. The Reynolds 
number defined by the half width of walls and maximum mean velocity is fixed 
at 10,000. In the Floquet analysis, a time-dependent Orr-Sommerfeld equation is 
employed and the velocity profiles are assumed as the superposition of the plane 
Poiseuille flow and the Stokes layer. The results focused only on Tollmein-
Schlichtin wave shows existence of the stable region on the parameter space 
even though under the supercritical condition. Direct numerical simulation also 
executed using the Fourier spectral method. The results obtained by DNS agree 
well with the Floquet analysis. These findings imply that the transition 
phenomenon of the present system is strongly dominated by TS wave. The 
visualization of the flow field shows a streamwise structure near the wall. This 
result suggests that there is some correlation between these structures and the 
rapid transition. 
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