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Abstract

This paper recalls the covariant structure of the Newtonian theory of fluid
mechanics and considers its extension to fluid turbulence. This structure requires
that the field equations be covariant under the Newtonian group (that is, under both
the Galilean group and the axial group): the dynamics are then consistent with the
first axiom of Newtonian continuum thermomechanics. The covariance structure
of the Reynolds decomposition under this Newtonian group is the main interest
herein.
Keywords: Newtonian fluid mechanics, covariance structure, turbulence.

1 Introductory remarks

It is generally accepted that constraints must be imposed upon turbulence models
to ensure consistency with the covariance structure of Newtonian continuum
mechanics. In other words, the mean motion equations and the turbulence model
must have a covariance structure that is consistent with the instantaneous Navier
Stokes equations. However, some additional constraints must also be imposed
upon turbulence models. For example, as was shown in Moulden [1], the
compressible flow mean motion equations need not have a unique solution for
any arbitrary turbulence model. The theory in Moulden [1] only gave the form
required, in norm, to guarantee uniqueness for such turbulence models. No explicit
structure for a unique turbulence model is available from within that uniqueness
theory; turbulence models must be evaluated individually.

The classical process involved in the construction of a turbulence model can be
summarized in the following way. First, a Reynolds decomposition is applied to
the field equations to generate a system of mean motion equations. The Reynolds
tensor, RRR, as well as other correlation terms, arise from the non–linear terms in
the Navier Stokes equations. This Reynolds tensor has a very different structure
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from the Cauchy stress tensor T(x, t). The latter follows the dictates of constitutive
theory in continuum mechanics while the former must be largely empirical in
nature. By definition the Reynolds tensor has the form RRR ≡ E(ρ′ u ⊗ u) (as in
equation (E2) below) and is symmetric while the Cauchy stress tensor, T, is only
symmetric when body moments and surface couples are absent. This is the case
considered below.

Hence, it can be asked: does the Reynolds decomposition process commute
with the inherent covariance structure of classical continuum thermomechanics?
These two, very distinct, theoretical developments need to be woven together as
the theory evolves. Studies on the covariant structure for continuum mechanics go
back to Noll [2] and Green and Rivlin [3] and that history need not be repeated
herein. The important finding of Green and Rivlin [3] was that Galilean covariance
of the energy equation only holds for flow variables which satisfy the linear
momentum equation. The present study is based upon the generalized presentation
in Moulden [4].

The philosophical stance adopted herein, in conformity with Green and
Rivlin [3], implicitly relates the ideas of Newton with those of Leibniz, Joule,
Mayer and Helmholtz. To start, there is the first axiom of Newton which provides
the underlying invariance structure of classical mechanics; the set of inertial
frames have a foundational role in the theory of classical thermomechanics. That
Newtonian mechanics does not provide any reason for the Galilean observation
of linear force–free motion is well known. The principle of Mach provides
an alternative interpretation of that finding of inertia but is still devoid of
providing reasons for its existence (see Moulden [5]). The structure of classical
thermomechanics must combine these two disparate lines of development:
mechanics and thermodynamics. Of course, after the work of Helmholtz, the
concept of energy covariance was much enlarged. This observation is particularly
true when compared with the primitive vis viva concepts known to Leibniz. At
the time of Newton and Leibniz there was little reason to expect thermal energy
transfer to be significant for the dynamics of particle motion.

As noted in Speziale [6] the Reynolds tensor need only be Euclidean covariant
and so is more general than conformity with Newtonian mechanics per se
would require. Since the Galilean group is a subgroup of the Euclidean group,
the Reynolds tensor must also be Galilean covariant. For reference, write the
Euclidean group, Eu, on R3 in the form:

x∗ = Q(t) [x + d(t)] ; t∗ = t+ t0 (E)

with d(t) ∈ R3 an arbitrary time dependent vector and t0 ∈ R an arbitrary
constant time increment. Whence:

v∗ = Q̇(t) [x + d(t)] + Q(t)
[
v + ḋ(t)

]
(E1)

Now, the Reynolds decomposition of the velocity field, v = V + u, where
V = E(v), gives the following definitions:

u∗ = Q u ⇒ RRR∗ ≡ E(ρ′u∗ ⊗ u∗) = E(ρ′(Qu)⊗ (Qu) = QRRRQT (E2)
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with ρ 7→ ρ + ρ′ (since the scalar density is frame indifferent) to show that the
Reynolds tensorRRR is frame indifferent under the Euclidean group. It is also evident
that the equalities trace(RRR∗) = trace(RRR) and det(RRR∗) = det(RRR) hold under Eu.
RRR∗ andRRR are in the same equivalence class and hence have the same spectrum.

1.1 The mass invariance constraint

It is required by Newtonian mechanics that, for any selected body of matter, B, the
mass M(B) ∈ R must be an invariant under time translation. This mass is also
Galilean covariant. Consequently, dM(B)/dt ≡ 0 as the body, B, moves through
spacetime. This latter condition expands as:

M(B) =

∫
B
dm ≡

∫
Dt

ρ dV

if Dt is the physical domain occupied by the body B at time t. Next, by the
transport theorem:

d

dt
M(B) =

d

dt

∫
Dt

ρ dV =

∫
Dt

[
dρ

dt
+ ρ div(v)

]
dV ≡ 0 (M)

The localization theorem then provides the usual differential equation:

∂ρ

∂t
+ div(ρ v) = 0 (M1)

that characterizes mass invariance in every inertial frame.

1.2 The  Galilean  group,  G a

Let OB = {$i} be the set of all Newtonian observers. As required by the first
axiom of Newtonian mechanics (extended to apply to continuum mechanics as in
Moulden [4] ), there is the group, G a, of transformations (as a subgroup of Eu) on
space S t at time t ∈ T :

x∗ = QG [x + VT t] ; v∗ = QG [v + VT ] ; t∗ = t (1)

where QG ∈ SO 3 is a constant coordinate axis orientation change while the vector
VT ∈ R3 denotes the constant Galilean boost velocity of the moving coordinate
frame Λ∗ ≡ {(x∗, t∗)}, fixed to the body B, and relative to the fixed inertial frame
Λc ≡ {(x, t)}. By inspection, equation (1) is just a restriction of (E). The field
equations are inherently indifferent under space and time translation and there
is no need to include these features in the group G a defined in equation (1). If
L = ∂v/∂x is the velocity gradient tensor then L 7→ QGLQT

G under G a. The
body force per unit mass, fmB , transforms as a vector: fmB 7→ QGfmB . The same
is true of the stress vector: t 7→ QGt so that the stress tensor, T, transforms as
T 7→ QGTQT

G. Each inertial frame, Λi, supports its own observer $i ∈ OB .
Scalars, such as the density ρ and temperature θ are invariant across inertial frames
so that:

ρ∗(x∗, t∗) = ρ(x, t) and θ∗(x∗, t∗) = θ(x, t)
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Similarly for the fluid pressure P (x, t). Note also that div∗(s∗) = div(s) for any
frame indifferent vector s (as required to show the covariance of equation (M1)
across inertial frames). The field equations are written in the Λ∗ frame and then
transferred back to the Λc frame though equation (1).

According to equation (1) the observers $∗ and $ move at constant velocity
relative to each other but both observers view the same thermomechanics within
the Newtonian framework.

1.3 The axial group, G z

The transformation that represents the requirement of Newton that rotational
motion persist unless impeded by some torque, is given by the group, G z , of
rotations:

x∗ = Q(t) x; Q(t) = exp[Z t]; t∗ = t (2)

with Z ≡ QT Q̇ ∈ S3sk a constant skew symmetric tensor whose axial vector
is denoted by r ∈ R3. Thermomechanics must be covariant under G z to satisfy
Newton’s requirement that: “A spinning hoop · · · does not cease to rotate, except
insofar as it is retarded by the air”, as stated following axiom I in Newton [7].
Equation (2) implies that:

v∗ = Q̇ x + Q v = Q [Z x + v] (2a)

and that:

a∗ = Q̇ [Z x + v] + Q [Z v + a] (2b)

Since the angular momentum equation only concerns the symmetry of the Cauchy
stress tensor, as in Moulden [4], there is little need to include it in the present
discussion.

1.4 Covariant requirements

Newtonian continuum mechanics must be covariant under the Newtonian group,
that is: the Newtonian equations of continuum thermomechanics must be covariant
under both the Galilean and axial groups: the field equations must have the same
form in all inertial frames. This must be true for all flow conditions: the fluctuating
quantities associated with turbulent flow do not countermand this requirement. The
starting point for a study of covariance, in the present context, is the total energy
equation stated in equations (3) and (3a) below; as well as the mass invariance
constraint expressed as the condition M(B) = constant. The latter is trivially
true and needs no further comment beyond the discussion in section 1.1 above.

2 The Newtonian covariant structure

The concepts involved here just require the field equations to be covariant across
changes in inertial frames in conformity with Newtonian continuum mechanics.
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It was shown by Green and Rivlin [3] that the total energy equation only enjoys
this covariance provided that the linear momentum equation holds true. Explicitly,
the linear momentum equation follows from covariance under the boost velocity in
the Galilean group. This then is the objective of the present paper: what does this
covariant structure imply about the nature of the Reynolds stresses in compressible
turbulent fluid motion? In summary:

Axiom 2.0: The covariant structure of Newtonian continuum thermomechan-
ics can be stated in the form:
1). The total mass of the Newtonian universe is time invariant.
2). The total energy of the Newtonian universe is time invariant.
3). The field equations that describe items 1). and 2). above must

be covariant across all inertial frames. That is, the theory must
be covariant under the Newtonian group.

Corollary 2.0: The linear momentum equation holds.

The covariant structure presented in axiom 2.0 and its corollary is reviewed below
and then extended to include the classical Reynolds decomposition often adopted
to discuss fluid turbulence.

To set the background to the present study, review the basic theory from
Moulden [4]. Start the development from the inductive statement:

Axiom 2.1: (Clausius): Total energy invariance
In the inertial frame Λc = {(x, t)} the total energy, E, of the entire universe
00 is invariant under time translation.

and requires that A(00, t) = 0 for all time. Here, the definitions, are:

A(D, t) ≡ dE

dt
=

∫
D
ρ

[
de

dt
+ 〈v, a〉

]
dV

if e(x, t) is the specific internal energy and a = dv/dt the local acceleration vector
for motion in the domain D occupied by body B. For A(∞, t) to satisfy item (2)
above there must be energy transfer across the boundary, ∂D, of the domain D
given by the quantities P(D, t) and Q(D, t). It is assumed that both P(00, t) and
Q(00, t) vanish identically. It is also assumed here that body moments and surface
couples are neglected, and that fmB denotes the body force per unit mass. Then there
is:

P(D, t) =

∫
D
ρ 〈fmB , v〉dV +

∫
∂D
〈t, v〉dA; Q(D, t) = −

∫
∂D
〈q,n〉dA

provided that t(x, t) is the stress vector (related to the Cauchy stress tensor by
Tn = t for outward unit normal n) and q(x, t) denotes the heat flux vector with
q 7→ QG q under G a. Then, utilizing the divergence theorem there is, in place of
equations (4a,b), the system:

P(D, t) =

∫
D

[
ρ 〈fmB , v〉 + div(TT v)

]
dV ; Q(D, t) = −

∫
D
div(q) dV

Assume in what follows that the Cauchy stress tensor is symmetric so that:

div(TT v) = 〈div(T), v〉+ trace(TL)
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This symmetry assumption is consistent with the request of covariance under the
axial group G z as shown in Green and Rivlin [3] as well as Moulden [4]. The
explicit form of the Cauchy stress tensor is not required (but the above noted
transformation T∗ = QG T QT

G is assumed to hold).
Heat sources, and radiant heat transfer, are not included in the definition of

Q(D, t) given above. No fluctuations in the body force will be considered in the
present formulation.

The first principle of thermomechanics requires, using equations (3) and (4c,d),
that the equality:

A∗(D∗, t∗) = P∗(D∗, t∗) + Q∗(D∗, t∗) (3a)

must hold for all fluid motions in the frame Λ∗ (fixed to the body B and moving
at constant velocity, VT , relative to frame Λc). This implied velocity field may be
laminar or if it may be turbulent. All Newtonian observers must find field equations
of the same form as equation (3a) when equations (4c,d) are included. That is,
introduce the quantity (A) from the equation:

(A) ≡

{∫
D

[
ρ∗
de∗

dt
+ div(q∗)

]
dV ∗

−
∫
D

[
〈(ρ(fm ∗B − a∗) + div(T∗)), v∗〉+ trace(T∗ L∗)

]
dV ∗ = 0

}

≡ A(D∗, t∗)− P∗(D∗, t∗)− Q∗(D∗, t∗)
with the notation (A) = Σ(Ai) adopted to identify the individual terms in equation
(5). The required result is, indeed, transparent from equation (5).

2.1 The Galilean group covariance

The above development leading to equation (5) can be formalized. The form given
by Newton for the first axiom was restricted to point masses subjected to forces
only. Such a specification is not adequate for continuum thermomechanics. Hence,
start by recalling the first axiom of Newtonian continuum mechanics, the axiom of
inertia for continuous thermomechanical bodies (copied from Moulden [4] ) as an
extension of the first axiom of Newton:

Axiom 2.2: Newton (extended),
Adopt the constraint 2.3 given below then, the center of mass of body B
moves relative to the frame Λc, such that:
1). With no angular velocity of frame Λ relative to Λc there is:

a). the speed, |||v|||, is a bounded constant
b). the motion is rectilinear

to define linear inertial motion and the geodesics of spacetime.
2). With no linear displacement of frame Λ relative to Λc there is:

c). the angular speed, |||ωωω|||, about a fixed axis through the center
of mass of B , is a bounded constant.
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The canonical frame, Λc, is located at the mass center of this Newtonian
universe00.

For the motion of a deformable heat conducting continuum body accept
the epistemological statement:

Constraint 2.3: Every material body B moves as a rigid body unless acted
upon by forces or by torques or unless thermal energy passes across the surface,
∂B, of B or between the parts of B. In addition, no heat sources exist in B, nor do
electromagnetic fields and thermal radiation act upon B. These constraints imply
that the internal energy, e(B), is an invariant of body B ≺ 00; where00 denotes the
universal body.

again, as given in Moulden [4]. Hence both linear and angular motion are included
in axiom 2.2 so that both the Galilean and axial groups defined above are specified
as part of the first axiom of Newtonian continuum mechanics. These two groups
relate to disparate properties of the energy equation (3) as outlined below. For
example, consider covariance of equation (3a) under the Galilean group, there must
be in the transformed frame Λc, from equation (5), the equality:∫

D

[
〈(a− fmB − div(T)/ρ),VT 〉

]
dV = 0

since the material derivative d(ϕ)/dt is invariant across inertial frames for any
frame invariant scalar ϕ. Since the boost velocity VT is an arbitrary constant
vector, there is the equality:∫

D
[
a− fmB − div(T)/ρ

]
dV ≡ 0

to recover the global Cauchy (linear momentum) equation as shown in
Moulden [4]. With the localization theorem equation (7) reduces to:

ρ a = ρ fmB + div(T) (7a)

as the local linear momentum equation of Newtonian continuum mechanics. The
symmetry of the Cauchy stress tensor follows directly from the covariance of the
field equations under the axial group G z when body moments and surface couples
are absent and need not be repeated herein.

2.2 Summary of the covariant formulation

The covariant formulation of the equations of continuum mechanics in the classical
Newtonian sense demands (see Green and Rivlin [3] ) that the total energy equation
is only covariant under Galilean transformations if the Cauchy equation holds true.
That is, the Cauchy equation (the second axiom of Newtonian mechanics for the
continuum) is not primitive in the context of classical thermomechanics.

3 The turbulent flow framework

The main interest herein is the interaction of the Reynolds decomposition with
the covariant structure of Newtonian mechanics outlined above. The first step is
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to combine the Galilean group with the Reynolds decomposition to obtain the
standard equations in the current variables. Given the non–linearity of the Navier
Stokes equations, it is not directly obvious that these two operations, the Reynolds
decomposition and the covariant structure, must commute.

3.1 The Reynolds decomposition

Start by introducing the Reynolds decomposition in the standard form for the
variables that appear in equation (5):

for scalars: e 7→ e+ e′; ρ 7→ ρ+ ρ′

for vectors: a 7→ a + a′; q 7→ q + q′; v 7→ v + v′

for second order tensors: L 7→ L + L′; T 7→ T + T′

The above decomposition assumes the linear viscous fluid so that the Cauchy stress
tensor only depends upon the velocity gradient:

T = µ
[
L + LT

]
− [P − µ∗ trace(L)] I

and is frame indifferent under the Galilean group. In addition, let E denote the
Reynolds average operation on any given inertial frame. Next, adopt the Galilean
group from equation (1) so that:

v∗ = QG [v + VT ] ; a∗ = QGa; t∗ = t (9a,b,c)

with QG and VT constants. This spacetime transformation implies that d∗(·)/dt ≡
d(·)/dt and that ∂(·)/∂x∗i ≡ QG|ij ∂(·)/∂xj . The time derivative transforms
under G a as: ∂(·)/∂t∗ ≡ ∂(·)/∂t − QG|ji Vj ∂(·)/∂xi. Also, it is assumed that
the body force per unit mass, fmB , does not have a fluctuating component. If such
fluctuations in fmB were to be included, they would act as a forcing function on
the turbulence and additional correlations, over those included below, would be
required in the theory. The comment made in section 4 below would then be
relevant.

3.2 The Galilean group covariance

The individual terms, (Ai), in equation (5) transform under the Reynolds
decomposition as:

(A1) E
∫
D
ρ
de

dt
dV ≡

∫
D

[
ρ
de

dt
+ E

(
ρ′
de′

dt

)]
dV

(A2) E
∫
D
ρ div(q) dV ≡

∫
D

[
ρ div(q) + E(ρ′ div(q′))

]
dV

(A3) E
∫
D
〈ρ fmB , v〉dV ≡

∫
D

[
〈ρ fmB , v〉+ E〈ρ′f

m
B , v

′〉
]
dV
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(A4)

−E
∫
D
〈ρa, v〉dV ≡ −

∫
D

[
〈ρ a, v〉+ E〈ρ′ a′, v′〉

]
dV

−
∫
D
E
[
〈ρ′ a′, v〉+ 〈ρ a′, v′〉+ 〈ρ′ a, v′〉

]
dV

(A5) E
∫
D
〈div(T), v〉dV ≡

∫
D
〈div(T), v〉dV +

∫
D
E〈div(T′), v′〉dV

(A6) E
∫
D
trace(T L) dV ≡

∫
D
trace(T L) dV +

∫
D
E
(
trace(T′ L′)

)
dV

In equation (A1), the (scalar) internal energy, e(x, t), is taken to be a property of
the fluid material and not of the motion of that material. Hence, the term de/dt
is identical in all inertial frames. Apply the Reynolds decomposition to equations
(9a,b) to find:

v∗ = QG [v + VT ] ; v′∗ = QGv′; a∗ = QGa; a′∗ = QGa′ (10)

and only influences the kinematic components of the equations. There is also,
for L the transformations: L 7→ QGLQT

G and L′ 7→ QGL′QT
G under G a. The

Cauchy stress tensor T is, as noted above, assumed to be frame indifferent so
that T 7→ QGTQT

G under G a and no VT term is generated. The Reynolds tensor
RRR(ρ′ v′ ⊗ v′) transforms as:RRR∗ = QGRRRQT

G as a restriction of equation (E2) to
the Galilean group.

Consider the above decompositions of (A) into the components (Ai) of equation
(5). Application of the Galilean group gives the following transformations of the
(Ai):

(A′1) E
∫
D
ρ
de

dt
dV 7→

∫
D

[
ρ
de

dt
+ E
(
ρ′
de′

dt

)]
dV

(A′2) E
∫
D
ρ div(q) dV 7→

∫
D

[
ρ div(q) + E(ρ′ div(q′))

]
dV

(A′3) E
∫
D
ρ 〈fmB , v〉dV 7→

∫
D

[
ρ 〈fmB , v〉+ E〈ρ′ f

m
B , v

′〉
]
dV +

∫
D
ρ 〈fmB ,VT 〉dV

(A′4)

−E
∫
D
〈ρa, v〉dV 7→ −

∫
D

[
〈ρ a, v〉+ E〈ρ′ a′, v′〉

]
dV −

∫
D
〈ρ a,VT 〉dV

−
∫
D
E
[
〈ρ′ a′, (v + VT )〉+ 〈ρ a′, v′〉+ 〈ρ′ a, v′〉

]
dV

(A′5)

E
∫
D
〈div(T), v〉dV 7→

∫
D
〈div(T), v〉dV

+

∫
D
E〈div(T′), v′〉dV +

∫
D
〈div(T),VT 〉dV
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(A′6) E
∫
D
trace(T L) dV 7→

∫
D
trace(T L) dV +

∫
D
E
(
trace(T′ L′)

)
dV

Then, for covariance of the theory, there must be, for all “i”, the equality:
Σ(Ai)− Σ(A′i) = 0. For this equivalence it is found that the constraint:∫

D

〈[
−ρ a + ρfmB − E(ρ′a′) + div(T)

]
,VT

〉
dV = 0

must hold in any inertial frame. Since the vector VT is an arbitrary constant, the
standard global mean linear momentum equation is recovered in the form:∫

D

[
−ρ a + ρfmB − E(ρ′a′) + div(T)

]
dV = 0

Finally, the localization theorem provides the local equation of mean linear
momentum in the form:

−ρ a + ρfmB − E(ρ′a′) + div(T) = 0

which is, of course, just the standard Reynolds decomposition of equation (7a)
when the body force does not possess a fluctuating component.

The remaining terms on the right hand side of the (A′i) contributions, do
however, provide turbulence contributions to the mean total energy equation. Only
the mean velocity transformation in equation (10) contains the boost velocity VT .

A deeper understanding of the covariant structure is lacking without a reason
for the existence of inertial frames. The principle of Mach was intended to
provide some understanding of inertial frames and their role in Newtonian theory.
However, as outlined in Moulden [5], the principle of Mach only provides an
alternative representation of this background in terms of an integral over the entire
Newtonian universe. The principle of Mach adds no fuller explanation of inertia
than what Bondi [8] describes as: “· · · magnitude of the inertia of any body is
determined by the masses of the universe and by their distribution”. A descriptive
comment rather than an explanation of the Mach principle. Einstein had other
things to say in response to the ideas of Mach.

For reference, note that the sum Σi(Ai) gives (with the mean motion equation
(12) subtracted) the Reynolds decomposition of the energy equation in the form:∫

D

[
ρ
de

dt
+ trace(T L) + ρ div(q) + 〈div(T, v〉+ 〈ρ a, v〉

+〈ρ fmB , v〉+ E〈ρ′ a′, v〉+ E〈ρ′f
m
B , v

′〉+ E〈div(T′), v′〉

−
[
E〈ρ′ a′, v′〉+ E〈ρ a′, v′〉+ E〈ρ′ a, v′〉

]
+ E

(
ρ′
de′

dt

)
+ E trace(T′ L′) + E(ρ′ div(q′))

]
dV = 0

The localization theorem provides the obvious partial differential equation which
need not be recorded herein. Equations (12) and (13) take on their simplest form if
the Favre average notation is adopted, but this will not be done herein. The result
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in equation (13) is independent of any turbulence model that may be introduced
and, of course, is of no practical use until such a model is included. The above
deliberations have shown that:

Lemma 3.2: Consistency,
The Reynolds decomposition commutes with the covariant structure of
Newtonian continuum thermomechanics.

to conclude the covariance study of the classical Reynolds decomposition. It only
remains to ensure that each of the turbulence models adopted in the applications
have the appropriate covariance structure to be consistent with the mean motion
equations.

4 Extensions?

One of the important practical problems of interest concerns a body moving
in a turbulent fluid and, as such, cannot be treated within the framework of
Galilean transformations since fluctuations in both orientation and velocity would
be required of any coordinate frame attached to the body. Such a coordinate frame
would not be inertial and equation (1) would no longer be appropriate. In addition,
fluctuations in the body force must also be included in this extended theory.
Since Newtonian mechanics is not Euclidean invariant such extended equations,
containing these additional fluctuations, cannot be considered within the present
framework.

5 Final remarks

It has been shown that the Reynolds decomposition process commutes with
Galilean transformations in the covariant formulation of Newtonian continuum
mechanics contained in axiom 2.0 above. The present study draws attention to the
consistency of the Reynolds decomposition in the covariant formulation.

The insistence upon a covariant structure as the basis of classical mechanics,
places the first axiom of Newton in a much deeper role than is often portrayed
in the standard literature on mechanics. In some sense, this importance is
philosophical rather than practical. However, a good theory, must have a sound
philosophical background.

The above comments do not, in any way, explain axiom 1 of Newton.
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