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Abstract

The computation of multiphase flows presenting high density ratios, where the
fluids involved are considered immiscible, are of great importance for fundamental
physics and industrial applications; such as the study of liquid-gas interfaces, wave
motion, simulation of bubbly flows and atomization, injection in diesel engines,
chemical processes and others.

This work presents and analyzes a collocated and staggered finite-volume mesh
discretizations suitable for three-dimensional unstructured meshes, which are able
to simulate immiscible multiphase flows with high density ratios. More over, these
mesh schemes numerically conserve mass and momentum while minimize errors
in the conservation of kinetic energy.
Keywords: collocated, conservation, multiphase, Navier–Stokes, staggered.

1 Introduction

Multiphase immiscible-phase flows with sharp density jumps are found in many
industrial applications. For example, the study of fluid-fuel interactions, formation
of bubbles and droplets, wave motion and others. This type of flows are usually
referred as interfacial flows, since the contact of immiscible fluids or phases in
motion produces a thin region that separates them called interface. Interfacial
flows are governed by the unsteady Navier–Stokes equations in the variable-
density incompressibility limit. Over the years, the collocated and staggered mesh
discretizations have stand out for the computation of the discrete Navier–Stokes
equations.
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On the one hand, collocated mesh discretizations calculate velocity and pressure
at cell centers while require particular interpolations and special mass fluxes at
faces. On the other hand, staggered mesh schemes directly solve mass fluxes at
faces and store pressure at cell centers. Then, cell-centered velocities need to be
interpolated from face mass fluxes.

In the last decade, an important effort has been made to improve the stability
and robustness of immiscible multiphase models by studying in detail the
pressure Poisson matrix [1] and proposing complex face density interpolations [2].
Otherwise, numerical techniques used for the simulation of turbulent flow have
evolved to discretely preserve kinetic energy [3–5] by using skew-symmetric
formulations, at expenses of increasing the local truncation error. Hence, this
work aims to introduce this conservation idea for the simulation of interfacial
flow discretizating the momentum equations by means of symmetry-preserving
collocated and staggered mesh schemes.

2 Discrete Navier–Stokes equations

Multiphase immiscible-phase flows are governed by the unsteady Navier–Stokes
equations in the variable-density incompressibility limit, written in divergence
form as

∇· u = 0, (1)

∂(ρu)
∂t

+∇· (ρuu) = −∇p+∇· (μ(∇u +∇Tu)) + S, (2)

where u, p and S represent velocity, pressure and a general source term. Density, ρ,
and dynamic viscosity, μ, are evaluated as the phase-volume fraction interpolation
of the properties for each phase k, given as

ρ =
∑
k

Ckρk and μ =
∑
k

Ckμk. (3)

2.1 Collocated mesh scheme

The collocated mesh scheme calculates velocity and pressure fields at cell centers
while needs particular interpolations and special mass fluxes at faces, in order to
minimize the kinetic energy error and conserve mass exactly.

The velocity-pressure coupling of the momentum equation, Eq. 2, is solved by
means of a classical fractional step projection method along with explicit time-
advancement, written as

ρn+1un+1 − ρn+1up = −Δt∇pn+1, (4)

ρn+1up = ρnun −Δt
[∇· (ρnunun)−∇· (μn(∇un +∇Tun))− Sn

]
, (5)

where superscript n refers to time instant, up is the predictor velocity and Δt is
the time step.
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First, the predictor velocity is discretizated by integrating Eq. 5 over cell c and
applying the divergence theorem to its faces, f ∈ F (c), giving

ρn+1
c upc = ρnc unc − Δt

Vc

∑
f∈F (c)

φnf M̂
n
f (6)

+
Δt

Vc

⎡
⎣ ∑
f∈F (c)

μnf

[
(unnb − unc )

Af
δdf

+∇Tunf · n̂fAf
]⎤⎦+ΔtSnc ,

where Vc is the volume of cell c, φf is the convected face velocity, M̂f is the face
mass flux, n̂f is the outward-unit face normal, Af is the face surface, subscripts
c and nb refer to the cell itself and the face-neighbor one, and length δdf is the
normal-projected distance between centroids of cells.

Next, dividing Eq. 4 by density, ρn+1, multiplying by the divergence operator,
applying the incompressibility condition, Eq. 1, and discretizating over cell c,
yields a discrete Poisson equation

∑
f∈F (c)

M̂p
f

ρn+1
f

= Δt
∑

f∈F (c)

1

ρn+1
f

(pn+1
nb − pn+1

c )
Af
δdf

, (7)

which solves the pressure field. When the solution of pn+1 is obtained, un+1

results from discretizating Eq. 4 over cell c as

un+1
c = upc −

Δt

ρn+1
c Vc

∑
f∈F (c)

pn+1
f n̂fAf , (8)

where pf is the pressure interpolated to face f .
Notice that no specific interpolations for φnf , M̂p

f , ρn+1
f , and pn+1

f have been
explained yet. Therefore, in order to fulfill the skew-symmetric requirement of
the discrete convective operator, the convected face velocity is evaluated as φnf =
1
2 (u

n
c +unnb) [4]. On the other hand, face predictor mass flux, density and pressure

are calculated as M̂p
f = 1

2 (ρ
n+1
c upc + ρn+1

nb upnb)· n̂fAf , ρn+1
f = 1

2 (ρ
n+1
c + ρn+1

nb )

and pn+1
f = 1

2 (p
n+1
c + pn+1

nb ), minimizing the kinetic energy conservation error as
it will be demonstrated in Sec. 3.

Finally, the mass-conserving evaluation of the face mass flux, M̂n+1
f , is defined

as

M̂n+1
f = M̂p

f −Δt(pn+1
nb − pn+1

c )
Af
δdf

. (9)
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Then, if the predictor mass flux is evaluated as the semi-sum M̂p
f = 1

2 (ρ
n+1
c upc +

ρn+1
nb upnb)· n̂fAf and up is substituted using Eq. 8, Eq. 9 is rewritten as

M̂n+1
f =

1

2
(ρn+1
c un+1

c + ρn+1
nb un+1

nb )· n̂fAf −Δt(pn+1
nb − pn+1

c )
Af
δdf

(10)

+Δt

⎡
⎣1
2

⎡
⎣ 1

Vc

∑
f∈F (c)

pn+1
f n̂fAf +

1

Vnb

∑
f∈F (nb)

pn+1
f n̂fAf

⎤
⎦
⎤
⎦ · n̂fAf .

2.2 Staggered mesh scheme

The staggered mesh scheme stores pressure and other scalar quantities at cell
centers while mass fluxes are distributed to cell faces. Each face stores only the
mass flux, therefore, the cell-centered velocity vector has to be recovered from
face normal components. This work extends the staggered mesh discretization
developed by Perot [3], suitable for unstructured meshes, to variable-density flows.

Thus, integrating Eq. 4 and 5 over face f control volume and taking a dot
product with the face normal vector, nf , results in the discrete staggered form
of the fractional step projection method

Mn+1
f =Mp

f −Δt(pn+1
b − pn+1

a )
Af

(Wa +Wb)
, (11)

Mp
f =Mn

f −Δt [Wa(ca − da − sa) +Wb(cb − db − sb)]
Af · nf

(Wa +Wb)
. (12)

Subscripts a and b refer to the two cells adjacent to face f and c, d and s are the
non-volumetric cell-centered discretizations of convective, diffusive and source
terms evaluated for each cell c as

cc =
1

Vc

∑
f∈F (c)

φnf M̂
n
f , sc =

1

Vc
Snc Vc (13)

dc =
1

Vc

∑
f∈F (c)

μnf

[
(unnb − unc )

Af
δdf

+∇Tunf · n̂fAf
]
,

where the convected face velocity, φf , is evaluated as previously defined for the
collocated formulation and length δdf is once again the distance between cells’
nodes.

Next, dividing Eq. 4 by density, multiplying by the divergence operator, using
the incompressibility condition and discretizing over cell c, gives the discrete
Poisson equation already presented, Eq. 7. In this case no interpolation for the
predictor mass flux is needed since it is given by Eq. 12 and δdf is now the distance
between cells’ circumcenters. When the solution of pn+1 is calculated, Eq. 11 is
used to obtain the face mass fluxes at instant n+ 1, Mn+1

f .
Finally, the staggered mesh scheme discretizes face mass fluxes in time, then,

cell-centered velocities need to be interpolated from face normal components.
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Then, if a first-order approximation of the momentum field (constant ρu) is
assumed, cell-centered velocities are defined as

uc =
1

ρcVc

∑
f∈F (c)

rcfM̂f , (14)

and rcf is the vector from cell circumcenter, xCCc , to face centroid, xCGf .

3 Conservation properties

3.1 Mass conservation

In the collocated case a special definition for the face mass flux, Eq. 10, has been
developed in order to exactly conserve mass for each cell c. On the other hand,
for the staggered case no interpolation of the face mass flux is needed since it is
calculated at cell faces by definition of the scheme. Hence, in both cases the mass
is locally conserved, consequently, global mass conservation, Eq. 15, equals zero
since it is a summation of locally mass-conserving quantities, expressed as

∫
Ω

∇· u dV =
∑
c∈Ω

∑
f∈F (c)

ÛfAf =
∑
c∈Ω

∑
f∈F (c)

M̂f

ρf
= 0. (15)

3.2 Momentum conservation

3.2.1 Collocated momentum conservation
Conservation of momentum is obtained by integrating Eq. 2 over the entire
domain, which is transformed to a summation of integrals for each control volume
that form the domain, converted to surface integrals by applying the divergence
theorem and simplified by canceling interior fluxes, giving

∑
c∈Ω

d(ρcuc)
dt

Vc +
∑

f∈F (∂Ω)

φfM̂f = −
∑

f∈F (∂Ω)

pf n̂fAf (16)

+
∑

f∈F (∂Ω)

μf

[
(uf − ua)

Af
δdf

+∇Tuf · n̂fAf
]
+
∑
c∈Ω

ScVc,

which states that the change in momentum is due to the fluxes through the
boundary of the domain and the source terms.

3.2.2 Staggered momentum conservation
The primary quantity in staggered mesh schemes is the face mass flux. Thus,
integrating Eq. 2 over face f control volume and taking a dot product with the
face normal vector, nf , gives the discretizated momentum equation for the face
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mass flux, Mf , written as

(Wa +Wb)
dMf

dt
+ (Waca +Wbcb)Af · nf = −(pb − pa)Af (17)

+ (Wada +Wbdb)Af · nf + (Wasa +Wbsb)Af · nf .

Discrete staggered conservation of momentum is shown by multiplying Eq. 17
by the face normal vector, nf , and summing over all faces of the domain, f ∈
F (Ω), which can be recasted to Eq. 16 by applying mathematical properties.
Hence, the momentum conservation for the staggered scheme states that the
change in momentum is due to the fluxes through the boundary of the domain
and the source terms, as in the collocated scheme case.

3.3 Kinetic energy conservation

The transport equation for kinetic energy is derived from the momentum equation,
Eq. 2, by taking the velocity dot product and assuming incompressible fluid. In
this way, the kinetic energy can be shown to obey

∂(12ρu · u)
∂t

+∇· [u(1
2
ρu ·u)] = −∇· (pu)+∇· (μu×ω)−μω ·ω+S ·u, (18)

where ω = ∇ × u is the vorticity. The important characteristic of this equation
is that it is conservative except for the negative definite sink term, μω · ω, and the
source term, S·u. In the absence of external forces and viscosity, the kinetic energy
is simply redistributed but not created or destroyed.

3.3.1 Collocated kinetic energy conservation
In order to investigate the collocated conservation of kinetic energy, the
momentum equation, Eq. 2, is discretizated over the whole domain and multiplied
by the velocity vector, u. Then, the resulting equation can be transformed to a
summation of surface integrals for each cell c, written as

∑
c∈Ω

uc· d(ρcuc)
dt

Vc +
∑
c∈Ω

uc·
∑

f∈F (c)

φfM̂f = −
∑
c∈Ω

uc·
∑

f∈F (c)

pf n̂fAf (19)

+
∑
c∈Ω

uc·
∑

f∈F (c)

μf

[
(unb − uc)

Af
δdf

+∇Tuf · n̂fAf
]
+
∑
c∈Ω

uc· ScVc,

where terms from left to right correspond to time derivative, convection, pressure,
diffusion and source contributions to the kinetic energy equation.

Making use of two important identities involving combinations of interpolation
and differentiation operators, presented by Felten and Lund [5], and noticing that
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interior fluxes cancel out, Eq. 19 can be rewritten as

∑
c∈Ω

d(12ρcuc· uc)
dt

Vc +
∑

f∈F (∂Ω)

1

4
ua· (4φfρf − φaρa)ÛfAf = (20)

−
∑

f∈F (∂Ω)

1

2
(uapf + ufpa) · n̂fAf +

∑
c∈Ω

pc
∑

f∈F (c)

δt

ρf

[
(pnb − pc)

Af
δdf

]

−
∑
c∈Ω

pc
∑

f∈F (c)

δt

2ρf

⎡
⎣ 1

Vc

∑
f∈F (c)

pf n̂fAf +
1

Vnb

∑
f∈F (nb)

pf n̂fAf

⎤
⎦ · n̂fAf

+
∑
c∈Ω

uc·
∑

f∈F (c)

μf

[
(unb − uc)

Af
δdf

+∇Tuf · n̂fAf
]
+
∑
c∈Ω

uc· ScVc,

which states that in the absence of viscosity (μ = 0) the change in kinetic energy
is due to the fluxes through the boundary of the domain, the source terms and a
kinetic energy error from the pressure term.

3.3.2 Staggered kinetic energy conservation
The staggered kinetic energy equation starts from the staggered momentum
equation, Eq. 17. First, the summation over faces is recasted as a summation over
cells, second, the resulting equation is multiplied by velocity, u. In this way, the
staggered kinetic energy equation is shown to obey the same equation as in the
collocated case, Eq. 19.

Proceeding similarly as in the collocated analysis, Eq. 19 is rewritten for the
staggered case as

∑
c∈Ω

d(12ρcuc· uc)
dt

Vc +
∑

f∈F (∂Ω)

1

4
ua· (4φfρf − φaρa)ÛfAf =

−
∑

f∈F (∂Ω)

1

2
(uapf + ufpa) · n̂fAf (21)

+
∑
c∈Ω

uc·
∑

f∈F (c)

μf

[
(unb − uc)

Af
δdf

+∇Tuf · n̂fAf
]
+
∑
c∈Ω

uc· ScVc,

which states that in the absence of viscosity (μ = 0) the change in kinetic energy
is due to the fluxes through the boundary of the domain and the source terms.

4 Numerical tests

4.1 Three-dimensional vortex

The conservation properties are numerically verified by solving a three-
dimensional vortex. This problem is chosen since is inherently unsteady but at
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the same time has zero net mass flux at the boundaries. The spatially periodic set
of three-dimensional vortices shown in Fig. 1 are described by

u = −A sin(kx) cos(ky)e−2k2νt,

v = A cos(kx) sin(ky)e−2k2νt, (22)

w = −A,
where A = 1.0 × 103 m/s is the velocity amplitude, k = 1 is the wave number
and ν = 0 is the kinematic viscosity set to zero.

The vortex is solved in a box of side 2π×2π×2π meshed with 66000 triangular
prisms, generated by the constant-step extrusion of a two-dimensional grid (2200
triangles × 30 planes, corresponding to a mesh size of h = 0.2). Moreover,
the box is filled with two different fluids; i.e. fluid with density ρ1 = 1 kg/m3

occupies the entire cube except for a sphere of radiusR = π/2, fixed in the center,
that corresponds to a fluid with different densities ρ2 = 10, 100, 1000 kg/m3. A
constant time step ofΔt = 1.0×103 s is used. BoundariesX and Y are considered
slip walls while periodic conditions are set for Z ones.

Figure 1: Schematic drawing of the three-dimensional vortex test.

Mass and total momentum for each mesh scheme and sphere density, ρ2,
are calculated at every time step using Eq. 15 and 16. Results corroborate that
both collocated and staggered schemes conserve mass and total momentum as
theoretically expected.

This particular test is really appropriate to study the conservation of kinetic
energy since viscosity is set to zero, there is no net mass flux at the boundaries and
no source terms exist. Under these conditions, the continuous transport equation
for kinetic energy, Eq. 18, determines that the rate of change of total kinetic energy
is zero, ∂k/∂t = ∂(1

2ρu· u)/∂t = 0. Hence, if any variation of kinetic energy
exists is due to an improper mesh discretization. In this way, the rate of change of
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kinetic energy, dk/dt, convection,∇· [u(12ρu·u)], and pressure, ∇· (pu), terms for
each mesh scheme and sphere density, ρ2, are calculated at every time step using
Eq. 19. Results confirm that the use of the symmetry-preserving convective scheme
turns out in a zero contribution to the energy equation. Otherwise, the pressure
term behaves differently depending on the mesh discretization. In detail, staggered
pressure contribution is zero for all density ratios, however, the collocated one
presents a non-zero value. As an example, kinetic energy rate of change and
pressure term are plotted in Fig. 2 for density ratio Δρ = ρ2/ρ1 = 10. The
figure clearly shows that the staggered kinetic energy variation is zero, while
the collocated case presents and unphysical kinetic energy variation equal to the
pressure error term.
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Figure 2: Kinetic energy rate of change and pressure term, using the collocated
and staggered mesh schemes, versus time with Δρ = 10.

It is interesting to numerically study the scaling order of this kinetic energy error
intrinsic to the collocated mesh scheme which depends on mesh size and time
integration, as previously analyzed in Sec. 3.3.1. First, the comparison between
the pressure error term and mesh size is evaluated by solving the vortex, for the
three different density ratios, on four successively refined meshes (h = 0.4 to
h = 0.05) with a fixed time step Δt = 1.0× 10−3 s. Second, the relation between
the pressure error term and the time integration is analyzed by solving the same
test on the h = 0.2 mesh, while trying four different time steps (1.0 × 10−2 to
5× 10−5).

Results of the kinetic energy pressure error at the first time iteration, depending
on the mesh size, are plotted in Fig. 3. The figure shows that if the mesh is
refined, the kinetic energy pressure error is reduced in a second-order manner
independently of the density ratio. Furthermore, the error difference between
density ratios is explained by the density-scaled pressure fields generated by the
pressure Poisson equation, Eq. 7.
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Figure 3: Kinetic energy pressure error for the collocated mesh scheme versus
mesh size, for different density ratios.
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Figure 4: Kinetic energy pressure error for the collocated mesh scheme versus time
step, for different density ratios.

The time integration study is plotted in Fig. 4. Results of the kinetic energy
pressure error, at the first time iteration, conclude that successively smaller time
steps provide proportionally reduced errors. Once again, the error difference
between density ratios is due to the different pressure fields obtained. Furthermore,
a first-order explicit time integration method has been used for the analysis of
the kinetic energy conservation, Sec. 3.3.1, but, using other time integration
methods may decrease the kinetic energy error. For example, if using gear like time
integration schemes, the time step multiplying the pressure error term in Eq. 20 is
diminished by a scaling factor (2/3 for a second-order case), therefore, the pressure
error term is consequently minimized [6].
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4.2 Exact sinusoidal function

Accuracy of the two mesh schemes is studied by solving an exact sinusoidal
function. In each case, a sinusoidal function is assigned to the input variables;
i.e. cell-centered velocities, u, in the collocated case while normal face velocities,
U , in the staggered one. Then, numerical normal face velocities for the collocated
case are obtained from Eq. 10, considering the ideal situation where pressure terms
vanish and dividing by face density, while numerical cell-centered velocities are
calculated from Eq. 14 for the staggered case, respectively. Finally, the root square
mean error (rms), xrms, is calculated by comparing analytical and numerical
results.

The stream function is set to be ψ = 1
2πN sin(2πNx) cos(2πNy)k. Thus,

instead of changing the mesh size, mesh refinement is performed by changing
the wavelength of the input sine functions. The test is performed in a cube of side
1.0 × 1.0 × 1.0 meshed with 9676 tetrahedra. Similarly to the previous test, fluid
with density ρ1 = 1 kg/m3 occupies the entire cube except for a sphere of radius
R = 0.15, fixed in the center, filled with a fluid that presents different densities
ρ2 = 10, 100, 1000 kg/m3.
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Figure 5: Velocity error versus relative mesh size with Δρ = 10. Approximated
regression equations are calculated.

Errors of U and ux velocity accuracy are obtained for relative mesh sizes
ranging from 0 to 0.35 and plotted in Fig. 5 for density ratio Δρ = ρ2/ρ1 = 10;
i.e. results come out to be independent of the density ratio. Collocated normal face
velocity errors are smaller than staggered cell-centered velocity ones for all relative
mesh sizes. In detail, it is observed that collocated errors are almost second-order,
f(h)c = 0.2h1.5, while staggered ones are just first-order, f(h)s = 0.6h.
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5 Conclusions

This work presents a collocated and staggered mesh discretizations of the
immiscible multiphase Navier–Stokes equations and analyzes their conservation
properties and accuracy.

First, a three-dimensional vortex is solved to numerically study the conservation
properties. On the one hand, the staggered scheme preserves mass, momentum
and kinetic energy. On the other hand, the collocated scheme conserves mass and
momentum, but presents a kinetic energy error of the form O(Δtm,Δh2,Δρ),
due to the improper pressure gradient formulation.

Second, an accuracy study has been performed by comparing numerical results
to the analytical solution of an exact sinusoidal function. Results show that
collocated normal face velocity errors (2nd-order) are smaller than staggered cell-
centered velocity ones (1st-order) for all relative mesh sizes, considering the ideal
situation where pressure terms in Eq. 10 vanish.
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