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Abstract 

The influence of hydrodynamic model selection on the optimal layout of fixed 
breakwaters found in harbour design has been tested. Results from different 
models were compared. The mild slope equation was considered as reference. 
An extended mild slope equation taking into account the slope and curvature of 
rapid variation in the bathymetry was examined. The influence of adding the 
wave dissipation factor like bottom friction and wave breaking phenomena were 
verified. The effect of taking into account the irregularity of incident wave was 
examined comparing to monochromatic waves. This study was built on testing a 
genetic algorithm optimization process to identify the optimal shape and location 
of fixed breakwaters where the degree of attenuation of waves in the harbour 
zone was defined as object. The hydrodynamic model was varied and the results 
were compared. Three case studies with different bathymetries and boundary 
conditions were taken. The case of deep harbour where wave breaking didn’t 
have a great influence was the first. Then a case of shallow harbour is discussed 
and finally an open sea case was studied as typical big gas ship refuges in a 
random wave area. 
Keywords:  breakwater, hydrodynamic modelling, sea wave, harbour. 

1 Introduction 

Harbours have always remained the central nodes of world trade. Designing 
harbours in the adequate way to maintain its safety and functionability is 
essential for coastal engineers and researchers. Building defence structures as 
breakwaters has the role of attenuating waves inside the harbour. The layout 
of breakwaters has to be a result of wave-structure interaction problem. The 
hydrodynamic model forms the main parameter of the problem. Wave 
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attenuation will be the objective, and wave forces acting on the structure will be 
one of the principle constraints in any coastal project. Too many authors worked 
on putting and improving the wave modelling theories to simulate the 
distribution of wave height, its dynamic pressure and velocity different 
components. In view of the excessive computational efforts required to solve a 
sophisticated hydrodynamic model, and the great number of possibility to be 
tested before choosing an optimum design of breakwater with the minimum 
possible cost, in a domain where the investment cost are big.  To minimize the 
computational cost, authors worked on many approach, they used optimisation 
techniques that allowed finding the optimum solution in the least computational 
time, and they choose often to abandon a lot of phenomena that occur in oceans 
and used a light hydrodynamic model.  
     In this paper we will test the influence of the hydrodynamic model selection 
on the optimal layout of a fixed breakwater. To do this we will refer to an 
optimisation study of fixed breakwater based on genetic algorithm used the basic 
mild slope equation known as Berkhoff equation to solve the hydrodynamic 
constraints (Berkhoff [1]). 
     In section 2, the different levels of the hydrodynamic model are presented. 
The basic mild slop equation is explained. The extended mild slop equation 
which could be applied in a rapid varying bathymetry is added. The dissipation 
phenomena due to bottom friction and wave breaking are taken into account. 
Then the model is generalized to have an irregular wave incident instead of 
monochromatic wave. 
     In section 3, the optimisation problem is defined then optimisation approach 
used in Elchahal et al. [2] is summarised. The tests are explained in section 4, 
where the domains of studies are defined and the way of comparison is 
developed. Results are shown and analysed in section 5 and finally a general 
conclusion is derived in section 6. 

2 Hydrodynamic modelling 

The mild slop equation eqn. (1) remains as one of the main models in coastal 
engineering problems to calculate the wave field. It was derived by Juri Berkhoff 
in 1972. It can approximate the velocity potential in steady state at any point 
ሺݔ,  ሻ of a varying bathymetry region, taking into account both refraction andݕ
diffraction. It is called by mild slope equation because it was only valid for mild 
slop bathymetries Berkhoff [1].   
.׏  ൫ܥܥ௚׏∅൯ ൅ ∅௚݇ଶܥܥ ൌ 0 (1) 
 ௚ are, respectively, the phase velocity and the group velocity, k is theܥ and ܥ
wave number and ∅ is the velocity potential in xy plane. 
     This partial differential equation is easy to be solved numerically. By solving 
the frequency dispersion relation eqn. (2), ݇ could be calculated in function of 
bottom depth ݄ Airy [3]. 

  
௪మ

௚௞
ൌ  ሺ݄݇ሻ                                                      (2)݄ݐ

  .is the wave pulsation, ݃ is the gravity acceleration ݓ
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     And then ܥ and ܥ௚ become determined. 

ܥ  ൌ
௪

௞
 (3) 

௚ܥ  ൌ
ଵ

ଶ
ቂ1 ൅

ଶ௞௛

௦௛ሺଶ௞௛ሻ
ቃ  (4) ܥ

  The boundary conditions are Neumann boundary. A boundary could be  
an incident boundary eqn. (5),  a  radiation boundary eqn. (6) and a partial or  
total reflection boundary eqn. (7). 

 డ∅

డ௡
െ ݅݇ cos ∅௣ߠ ൌ

డఊ

డ௡
െ ݅݇ cos  (5) ߛ௣ߠ

 డ∅

డ௡
െ ݅݇ cos ∅௣ߠ ൌ0 (6) 

 డ∅

డ௡
െ ݅

ଵିோ௘೔∝

ଵାோ௘೔∝
݇ cos ∅௣ߠ ൌ 0 (7) 

݊ is the normal vector to the boundary, ߠ௣ is the angle between n and the wave 
normal, ߛ is the imposed potential, ܴ is the reflection coefficient and ∝ is the 
time lag. 
     Noting that a radiation boundary is a reflection boundary has a reflection 
coefficient equal to zero.  
     Thereafter, many authors have introduced improvements on the main 
equation. Extended and modified mild slop equations appeared.  In this section 
we will see some of these improvements. 

2.1 Extended mild slop equation 

The validity of the eqn. (1) was generalized for any type of bathymetry. The 
gradient and curvature terms was integrated to obtain an extended equation 
(eqn. (8)) 
.׏  ൫ܥܥ௚׏∅൯ ൅ ሺ1 ൅ ݂ሻ. ∅௚݇ଶܥܥ ൌ 0  (8) 

 ݂ ൌ .ଵሺ݄݇ሻܧ ሺ݄׏ሻଶ ൅
ாమሺ௞௛ሻ

௞బ
. ∆݄ (9) 

݇଴ is the wave number at an infinite depth. 
     Several expressions of ܧଵ and ܧଶ exist in the literature, we used the ones 
proposed in Chamberlain et al. [4].  

ଵܧ ൌ
൛௫రାସ௫య ୱ୧୬୦ሺ௫ሻିଽୱ୧୬୦ሺ୶ሻ ୱ୧୬୦ሺଶ୶ሻାଷ୶ሺ୶ାଶୱ୧୬୦ሺ୶ሻሻ.൫ୡ୭ୱ୦మሺ୶ሻିଶୡ୭ୱ୦ሺ୶ሻାଷ൯ൟ

ଷቀଵା
ೣ

౩౟౤౞ሺೣሻቁ.ሺ௫ାୱ୧୬୦ሺ௫ሻሻ
య

 (10) 

ଶܧ  ൌ
ሼ௦௜௡௛ሺ௫ሻି௫.௖௢௦௛ሺ௫ሻሽ

ଶቀଵା
ೣ

౩౟౤౞ሺೣሻቁ.௖௢௦௛
మሺ௫/ଶሻ.൫௫ା௦௜௡௛ሺ௫ሻ൯

 (11) 

with 2݄݇= ݔ. 
     The first one represents the gradient term; it is multiplied by the square of the 
gradient. The second one relied to the Laplacian which represents the curvature.  

2.2 Energy dissipation 

In order to make the equation closer to the real physics, introducing the 
dissipation phenomena is necessary. Two kind of dissipative effects were taken 
into account; the bathymetric breaking and the bottom friction. A modification 
on the mild slope equation is suggested De Girolamo et al. [5]. 
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.׏ ൫ܥܥ௚׏∅൯ ൅ .௚ሺ݇ଶܥܥ ሺ1 ൅ ݂ሻ ൅ ∅ሻߤ݇݅ ൌ 0                     (12) 

 .is the dissipation coefficient ߤ

2.2.1 Bottom friction 
According to the nature of the bed, bottom friction could or couldn’t have a great 
influence on the wave energy. That is why a friction coefficient must be added. 
Many formulation of dissipation coefficient to introduce bottom friction were 
suggested, some of them are simpler to compute than others (Putnam and Johson [6]).   

ߤ  ൌ
ଶ௙ೢ ு௪య

ଷగ௚஼೒௦௜௡௛యሺ௞௛ሻ
 (13) 

௪݂ is the friction coefficient, ܪ is the wave height. 
     This coefficient depends directly from wave height which will be derived 
from the resultant velocity potential through the following relation: 

ܪ  ൌ
ଶ௪

௚
|∅|                                                      (14) 

The equation is no more linear, introducing the dissipation makes it nonlinear 
which create more difficulties and computational effort requirements. 

2.2.2 Wave breaking 
Wave breaking is a different term of energy dissipation in wave propagation. 
Although it is a nonlinear term as the bottom friction, it is not as continuous as 
the friction. Wave breaking happens only when the velocity of a water particle at 
the free surface exceeds the wave propagation velocity. A critical breaking 
height Hm must be calculated (Mei [7]). 

௠ܪ  ൌ
଴.଼଼

௞
݄ݐ ቀ

଴.଼

଴.଼଼
݄݇ቁ (15) 

The breaking occurs when ܪ exceeds ܪ௠. One of the easiest ways to introduce it 
is to multiply the dissipation coefficient by a new term ܳ௕ as following Battjes et 
al. [8]. 
  

ߤ  ൌ ܳ௕
ଶ௙ு

௛஼೒
 (16) 

݂ is the frequency. 

 ܳ௕ ൌ ൜
0, ܪ ൏ ௠ܪ
ܪ,1 ൒ ௠ܪ

 (17) 

2.3 Random wave incident 

A wind-induced wave in the ocean will never be a monochromatic wave. It is a 
superposition of several monochromatic waves with different periods and lags. 
     Two approaches to model a random wave exist; the time domain approach 
and the spectral approach. Since that the solution of Berkhoff equation is based 
on the frequency dispersion relation, the second approach is used. To solve the 
equation with random wave input, an inverse direction is taken. The random 
wave is decomposed into specific number of representative monochromatic 
waves.  
     The incident wave is characterised by its proper significant height ܪ௦ and 
peak period ௣ܶ, A spectral density is created. One of the most common is the 
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is derived. Then the curve is decomposed into equal energy parts, and the periods 
of monochromatic waves will be the mean period of each part. The wave heights 
will be the same for all the monochromatic waves.  
 

 

Figure 1: JONSWAP density spectrum (left) and cumulative spectrum (right). 

     Since the energy of each incident monochromatic wave is the same, the total 
energy at a point in the domain is the sum of the monochromatic wave energies 
making it up (Goda [10]). 

ܪ  ൌ ටଵ

ே
∑ ௞ܪ

ଶே
௞  (18) 

ܰ is the number of representative monochromatic waves. 
     Noting that in the case of random wave input, the results are in term of energy 
height, which is combined from the monochromatic waves’ energies. That means 
we don’t have any more complete information about velocity potential in the 
wave field, we only have the module of the potential eqn. (14). These mean we 
couldn’t calculate the surface elevation in the field eqn. (19). 

ߦ  ൌ
௪

௚
ܴ݈݁ܽሺ݅∅ሻ (19) 

 .is the surface elevation ߦ

3 Optimisation problem 

The optimisation problem is to find a design variable vector xi, in manner to 
minimize the objective function ݂ሺݔ௜ሻ and subject to the constraint: ܥሺݔ௜ሻ ൑ 0. 

3.1 Objective function 

The objective is to minimise the cost of the breakwater. We seek the optimal 
layout of a one segment breakwater that has a minimum length and a position 
with minimum depth to achieve an acceptable wave disturbance inside the target 
zone.  
     The objective function eqn. (20) is related to the length of breakwater and the 
depth in its position. The width of breakwaters is considered to be the same 
always. And the difference in the cost of volume unit according to the depth and 
distance from the coast is ignored. The cost is expressed in units of area.  
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௢݂௕௝ሺݔ௜ሻ ൌ ݊݅ܯ ቂ൬݉݅݊ሺ݄ଶ, ݄ଵሻ ൅ ݏܾܽ ቀ
௛మି௛భ
ଶ

ቁ൰ . ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ  ଵሻଶቃ (20)ݕ

݄ଵ and ݄ଶ are respectively the depth of breakwater extremities ሺݔଵ,  ଵሻ andݕ
ሺݔଶ,  .ଶሻݕ

3.2 Constraints 

The only constraint has to be put in the problem is the wave disturbance 
constraint eqn. (21). A maximum allowable wave height ܽ in the target zone is 
considered.  
௜ሻݔሺܥ  ൌ ,ݔሺܪ൫ݔܽ݉ ,ݕ ሻ൯ݐ ൑ ܽ (21) 
  

   Other constraints  depend  on  the  geometry  of  the  domain  and  the  navigational  
consideration must be taken into account properly in each case. They appear in 
the domain definition of the solutions. The solutions mustn’t be outside a 
predefined polygon that respects these constraints.   

3.3 Genetic algorithm 

The optimisation approach proposed by Elchahal et al. [2] has been taken. The 
Genetic Algorithm (GA) is used. A Genetic Algorithm is a stochastic global 
search algorithm. It works in manner similar to the biological genetic. An initial 
population is generated randomly. Then a fitness equation takes the role to give 
each individual a degree of adaptation to the problem. Then the best solutions of 
the population are selected. After that a new generation is made through the 
crossover and mutation operators. The crossover operation is an interchange of 
genetic information between two selected individuals called parents to create a 
new individual. The mutation is the introducing of new random individuals in the 
generation, usually the rate of the mutation is low to grantee the convergence.   
This process is repeated sufficiently, until we got a well adapted generation to 
the fitness criteria. 

4 Test cases  

The aforementioned levels of the hydrodynamic model were substituted in the 
optimisation model. Three types of domains used to make the tests. The first one 
is a deep water harbour where the rapid change of bathymetry and the bottom 
friction were tested. A shallow port is used to test the breaking wave effect. An 
open see case is used finally to study the influence of random wave input. 
     In each case the domain with its proper bathymetry is defined. The target 
zone to be protected is chosen. And the polygon that contains the set of possible 
solutions is determined. A total of 7 tests were made, these different tests are 
shown in table 1. 

4.1 Deep harbour 

The incident wave comes from the NE side doing an angle of 225° with the x 
axis. It has 3m height and 9s period. The west side is a radiation side open to the 
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Table 1:  Test cases. 

 Deep harbour Shallow harbour Open sea 
Basic mild slop × × × 
Extended mild slop ×   
Bottom friction included ×   
Wave breaking included  ×  
Random wave incident   × 

 

sea. The reflexion boundary has a reflexion coefficient equal to 0.33 without any 
lag. The maximum allowable wave height in the target zone is 0.5m. The friction 
coefficient equal to 0.1. 
 

 

Figure 2: Deep harbour domain. 

4.2 Shallow harbour 

The incident wave comes from the SW side doing an angle of 45° with the x 
axis. It has 2m height and 4s period. The east side is a radiation side open to the 
sea. The reflexion boundary has a reflexion coefficient equal to 0.33 without any 
 
 

 

Figure 3: Shallow harbour domain. 
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lag. The low depth of water near the shore makes the breaking phenomenon 
appears. The maximum allowable wave height in the target zone is 0.5m. 

4.3 Open sea case 

The incident wave comes from the NW side doing an angle of 315° with the x 
axis. It has 2.8m significant height and 10.4s peak period. 5 representative waves 
are calculated using the method aforementioned in section 2.3; they are shown in 
table 2. The maximum allowable wave height in the target zone is 0.5m. 
 

 

Figure 4: Open sea domain. 

Table 2:  Random wave calculated parameters. 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 
 0.85000 0.8552 0.8935 0.9281 0.8987 (m) ܪ
ܶ (s) 12.3200 10.6495 9.2400 7.6624 5.7120 

 
     The east and south side are radiation sides open to the sea. The reflexion 
boundary has a reflexion coefficient equal to 0.33 without any lag. It exists only 
for the added breakwater. 
     This case simulates the offshore pumping station for the huge oil and gas 
tanker. 

5 Results and discussions 

The PDE Toolbox in MATLAB 2013a™ is used to find the solution of the linear 
and nonlinear partial differential equation. The optimisation algorithm is coded 
with the reference functions of MATLAB™. All the testes have been run on the 
same computer to compare the consumed computational efforts by comparing 
the overall duration. A laptop with core i5-3210M CPU @ 2.50GHz and 6GB 
RAM is used. 
     The optimal solution of each case mentioned in section 4 is found and 
compared to reference solution of the same domain using the basic mild slop 
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equation eqn. (1) to verify the existence of influence. The results are discussed to 
see if ignoring of such phenomena overestimates or underestimates the solution. 
To maintain the convergence to the optimal solution, we didn’t stop before 
attending a steady state phase in the objective function. 
 

 

Figure 5: Optimal solution for reference case in deep harbour (left) and 
Objective function progress (right). 

5.1 Influence of rapid varying bathymetry 

The optimal layout has been determined after 20 iterations. Figure 6 shows the 
optimal solution achieved, after taking into consideration the rapid change 
bathymetry parameter. Results in table 3 show that the surface area of the 
breakwater is larger than it was in the reference case. That is logical, because 
ignoring the rapid change bathymetry in a domain with big slops and curvatures 
will disturb the wave field and usually underestimates the amount of wave 
energy, so it is obvious that the algorithm will tend to generate a bigger 
breakwater than the reference case. 
     They show also that adding the rapid change parameter has slightly affected 
the computational time. From this point it will be taken always into 
consideration. 

5.2 Influence of bottom friction 

Figure 6 shows the optimal solution achieved with taking bottom friction in 
consideration. In this case the area of the breakwater has been less than the 
reference case but the time cost has significantly increased, due to solve a 
nonlinear differential equation. Results, in table 3, show that ignoring bottom 
friction will overestimate the design.  

Table 3:  Deep harbour results. 

 Reference case Rapid change Bottom friction 
Computing time (s) 1119 1206 7100 
Breakwater section (m2) 30000 38000 28000 
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Figure 6: Optimal solution with rapid change parameter (left) and bottom 
friction (right). 

5.3 Influence of wave breaking 

In this case the optimal solution has shown a significant reduce of breakwater 
area, the wave energy has been dissipated due the wave breaking in surf zone 
shown in Figure 3. Results are summarized in table 4 and Figure 7 shows the 
optimal layout. 

 

Figure 7: Optimal solution for reference case (left) and with wave breaking 
(right). 

Table 4:  Shallow harbour results. 

 Reference case Wave breaking 
Computing time (s) 2290 16900 
Breakwater section (m2) 120 80 

5.4 Influence of random wave incident 

Random wave incident will affect hardly the computational time; it is ܰ times 
more than monochromatic wave, where ܰ is the number of representative waves. 
It has a great influence also on the breakwater section which had been reduced 
by 21%. These results are shown in table 5. The optimal solution is shown in 
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Figure 8 in term of wave height because surface elevation couldn’t be plotted 
using this method. 

Table 5:  Open sea results. 

 Reference case Random wave 
Computing time (s) 13500 60600 
Breakwater section (m2) 51000 40000 

 

 

Figure 8: Optimal solution for reference case (left) and for random wave 
incident (right). 

 

Figure 9: The cost of proposed breakwater in respect to the computational time 
consumed. A, D and F are the reference tests. B is the extended eqn. 
test, C is the bottom friction test, E is the wave breaking test and G is 
the random wave test. 
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     The differences show that it is very wrong to substitute a full analysis of a 
random wave by an approximation of monochromatic wave that has a wave 
height equal to ܪ௦ and period equal to ௣ܶ. 

6 Conclusion 

Results in this paper showed the importance of taking the phenomena of real 
physics into consideration when designing coastal structure where the investment 
cost is always very high. Ignoring the rapid change bathymetry will 
underestimate the solution where ignoring the other phenomena will 
overestimate the solution. The energy dissipation depends a lot on the studied 
domain and specially the bathymetry. The random wave height couldn’t be taken 
as a monochromatic wave where the results will become very different. The 
computational efforts limitation is a real challenge to implement all the 
phenomena together. Efficient optimisation approaches and appropriate 
numerical solutions of the hydrodynamic models need to be continuously sought. 
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