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Abstract

The effect of sudden changes in the Earth’s moment of inertia on the
hydromagnetic state of the core is studied. Rapid changes in georotation, due to
ice age transgression and regression, are described as varying boundary conditions
in an axisymmetric Earth model containing both viscous and electromagnetic
coupling. The deterministic equations describing the limit of rapid rotation are
employed in conjunction with restricted 2-D predictive magneto-fluid equations.
A kinematic description is adopted for both buoyancy driven mass motions and
the regeneration of the poloidal magnetic field. A pseudo-spectral method is used
to solve the incompressible magneto-fluid equations. The variables are collocated
in radius using Chebyshev polynomials and the pseudospectral evaluations in
colatitude are done using associated Legendre polynomials. Time dependence
and magnetic diffusion are controlled by a modified second order semi-implicit
Runge–Kutta scheme. Steady state boundary layers, arising from differential
motion of the outer core boundaries, were found to induce significant departures
for both α2- and αω-dynamo steady state configurations. In particular, the
toroidal field is found to reverse completely in the α2 model. The hydromagnetic
communication time of the core, determined by the predictive magneto-fluid
equations supports these deterministic calculations. The actual lag-rate of the inner
core has yet to be established. Within the context of this model, it is concluded that
a causal connection is plausible between geomagnetic transients and significant
changes in the Earth’s moment of inertia.
Keywords: dynamo theory, geomagnetic reversal, eustacy, MHD, CMHD, spectral
methods, spectral collocation.

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 82, © 2014 WIT Press

doi:10.2495/AFM140061

Advances in Fluid Mechanics X  59



1 Introduction

This paper is essentially a case-study in Computational Magnetohydrodynamics
(CMHD) utilizing Spectral Methods. In particular, it is concerned with the
geophysical problem of the hypothetical connection between sudden, significant
eustatic change and the hydromagnetic state of Earth’s deep interior [1–9].
This proposition may be outlined as follows: Significant sea-level changes have
occurred many times throughout Earth’s history as a consequence of transgressions
and regressions of ice-ages, thus producing global sea-level changes that are
typically on the order of 100 meters. Rapid sea-level rise will augment the mantle’s
moment of inertia if the eustatic sea-level rise is rapid compared to the viscous
response time of the mantle, which is the case for ice-age regressions. In order
to conserve angular momentum, the mantle will spin-down by one part in 105 -
amounting to a loss of one second per day.

If the time-scale of such a spin-down is rapid compared to the hydromagnetic
response time of the outer core, which is arguably true, then this sort of event on
the surface of the Earth may produce an impulse in Earth’s deep interior which
could initiate a geomagnetic transient (excursion or reversal). In what follows, we
assume these geophysical mechanisms and present a spectral method-based Earth
model to describe this evolution problem.

The numerical method utilized to approximate the solution space of the coupled
set of PDEs is spectral collocation. Spectral methods are extremely accurate and,
therefore, are the only numerical technique useful enough for evolution problems
involving large temporal integration. Eventually, we will turn to the details of
this calculation, but first we must characterize the physical problem at hand.
What follows in the next two sections is a condensed discussion of the pertinent
geophysics.

1.1 The core environment

The evolution of an astrophysical-scale magnetic field B embedded in an
electrically conducting fluid of velocity v and electrical conductivity σ is
described by an linear inhomogeneous diffusion equation usually referred to as
the hydromagnetic induction equation (viz., [9]),

∂B

∂t
= ∇× (v ×B) +∇× (η∇×B) (1)

where
η =

1

σμ0
(2)

and μ0 is the permeability of free space. If the fluid has uniform electrical
conductivity the last term collapses to η∇2B, revealing η as the magnetic
diffusivity. This assumption is commonly made as little physical insight is gained
from the additional computational expense incurred from a continuously variable
conductivity model (ie., [10]). The momentum equation describing the evolution
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of the Earth’s fluid outer core is

ρ
∂v

∂t
+ (v · ∇v) = −∇p+

∑
Fi (3)

where FC = 2Ω× v is the Coriolis force, FL = B · ∇B/μ0 is the Lorentz force,
FA = ρg is the Archimedean force and Fv = μ∇2v + μ

3∇(∇ · v) is the viscous
force. The outer core can be modeled as an incompressible fluid, which provides
overwhelming simplifications.

Let us gauge the relative importance of the individual terms contained in the
momentum equation within the context of the Earth’s core. The low fluid velocities
previously mentioned suggest that the inertial acceleration (v · ∇)v is very small
compared to the Coriolis acceleration 2Ω × v under steady state conditions.
Estimation of the remaining viscous dissipation term is hindered by our poor
understanding of the outer core viscosity the literature values span nearly
fourteen orders of magnitude (viz., [11]). However, values at the lower limit,
ν ∼ 10−6 m2·s−1 appear most likely (i.e., [12]). Note that the kinematic viscosity
is ν = μ/ρ. The viscous term is orders of magnitude smaller than the Coriolis term
even if one assumes the largest estimates of ν. Also note that the effective pressure
is no longer a thermodynamic variable but rather a fluid parameter that insures the
solenoidity of the fluid (viz., [13]).

From our crude estimations, equation (3) can be reduced to

2ρΩ× v = −∇p+ ρg +
(∇×B)×B

μ0
(4)

where balance exists between the Coriolis force, pressure gradients, the
gravitational force and the Lorentz force. The observation that most astrophysical
dipole fields are closely aligned with their rotation axes strongly supports the
contention that the Coriolis force is dominant. Then with gravitational forcing,
the specifics of outer core fluid motions determine how the remaining two forces
balance with the Coriolis force. Equation (4) forms the basis for the well known
limit of rapid rotation (i.e., [14]).

It was first noted by Elsasser [15] shear is very efficient in generating cosmic
magnetic fields. The process whereby an azimuthal magnetic field is generated by
differential rotation is termed the ω-effect (viz., [16]). A meridional field, such
as a dipole, cannot be produced in this manner. In fact, Cowling’s theorem [17]
rules out complete axisymmetry there must be an element of asymmetry
to have self sustained dynamo action. Parker [18] proposed meridional field
regeneration through a mechanism whereby rising helical convective plumes
distort the azimuthal component into the meridional plane. This is referred to as
the α-effect [19] and is discussed in more detail later. If the ω-effect is weak the
dynamo is referred to as of α2-type (geostrophic). Otherwise, it is referred to as an
αω-dynamo (magnetostrophic).
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2 The earth model

We assume a three-component view of Earth (inner core, outer core and mantle)
we now assume axisymmetry. The calculation reduces to two dimensions with
azimuthal independence in mean quantities. This approach has been developed in
recent years, especially in mean-field magnetohydrodynamics [20]. Inherent in this
assumption, however, is that radial convective motions possessing helicity, crucial
to dynamo action, cannot be modeled explicitly. This poses no serious concerns
for investigations of this kind, as shall be seen below.

The change in the core-mantle boundary conditions are that of uniform zonal
shear. Furthermore, a change in the meridional velocity field is sought, which
can be fully accounted for in this description. In spherical coordinates (r, θ, φ)
the large-scale structures of this model reside in the azimuthal plane φ, and,
accordingly, axisymmetry is justified. Let us now turn to the mathematical
description of the core.

2.1 MHD model equations

The solenoidal decomposition of both field variables into poloidal and toroidal
components allows one to rewrite the hydromagnetic induction equation in
component form as

∂A(i)

∂t
=
ηi
ηo

∇2
φA

(i) (5)

∂B(i)

∂t
=
ηi
ηo

∇2
φB

(i) (6)

∂A(o)

∂t
= ∇2

φA
(o) + αB(o) + ℵ2(ψ,A

(o)) (7)

∂B(o)

∂t
= ∇2

φB
(o) + ℵ1(v,A

(o))− ℵ1(B
(o), ψ)

+ αêφ · ∇ ×
[
ξ∇×

(
A(o) êφ

)]
(8)

where

∇2
φ ≡

(
∇2 − 1

r2 sin2 θ

)
(9)

is the φ-component of the spherical axisymmetric vector diffusion operator and the
interaction terms, operating on some field quantities χ1 and χ2, are conveniently
expressed as

ℵ1(χ1, χ2) ≡ êφ · ∇ × [χ1 êφ ×∇× (χ2 êφ)] (10)

and
ℵ2(χ1, χ2) ≡ êφ · [∇× (χ1 êφ)×∇× (χ2 êφ)] (11)
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(viz., [21, 22]). The superscripts (i) and (o) refer to inner core and outer core
quantities, respectively. The only relevant physics pertaining to the inner core is
magnetic diffusion. We see that the α-effect produces both poloidal and toroidal
fields. Note that, for an αω-dynamo, the α-effect is overwhelmed by the ω-
effect, ℵ1(v,A

(o)). Also, poloidal field is generated by non-parallel interactions of
both field quantities within meridional planes whereas both vT -BP and BT -vP
interactions contribute to the toroidal field. Note also that axisymmetric motions
alone cannot regenerateA — this is Cowling’s theorem.

Let us discuss the exact model prescription of the α-effect. Any reasonable
simplistic parameterization of the small-scale asymmetric flow will suffice in this
endeavor. For example, Hollerbach and Jones [23, 24] found the simple expression
α = α0 cos θ an adequate description. The choice of α as a scalar amounts to all
components of the tensor ξij vanishing except the diagonals; that is, ξ11 = ξ22 =
ξ33 = α. Hollerbach and Jones [25] utilized a tensor description, with only ξ33
non-vanishing, and found satisfactory results.

Let us now turn to the momentum equation. The vector potential formalism for
the evolution of the poloidal magnetic field presents better stability characteristics
for numerical simulations. In addition, the rotational form describing the fluid
vorticity can be employed where, in a similar poloidal-toroidal decomposition,
is advantageous in a computational sense (viz., Canuto et al. [26]). As such, the
momentum equation may be expressed in the following streamfunction-vorticity
formalism

∂ω

∂t
= Ro−1

{
2vz − E∇4

φψ − Λ[ℵ1(B
(o), B(o))− ℵ1(∇2

φA
(o), A(o))] +

∂F

∂θ

}

+ ℵ1(v, v) − ℵ1(∇2
φψ, ψ) (12)

∂v

∂t
= Ro−1

{
2ψz + E∇2

φv + Λℵ2(B
(o), A(o))

}
+ ℵ2(ψ, v) (13)

where ω is related to the stream function by

ω = −∇2
φψ (14)

and
∂

∂z
≡ cos θ

∂

∂r
− sin θ

r

∂

∂θ
(15)

(viz, [21, 22, 26]). The operators ℵ1 and ℵ2 were defined earlier by equations (10)
and (11) and describe the nonlinear interactions. Note there is no need for the
superscript notation for fluid quantities, which are restricted to the outer core. The
pressure no longer appears explicitly when taking the curl of the meridional part
of the momentum equation.
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Noting that Ro ∼ 10−8 then the limit of rapid rotation is obtained by solving
only the diagnostic set of equations

2
∂v

∂z
− E∇4

φψ = Λ[ℵ1(B
(o), B(o)) + ℵ1(∇2

φA
(o), A(o))] +

∂F

∂θ
(16)

2
∂

∂z
+ E∇2

φv = −Λℵ2(B
(o), A(o)) (17)

contained in equations (12) and (13).
As a final point we note that, in the limit of rapid rotation, the neglect of inertia

necessitates that the total torque must vanish on the inner core boundary [27].
There must, therefore, be torque balance. The simplest way to accomplish this is
by assuming that electromagnetic and viscous torques compete at the boundary
(i.e., [23]). Of course, the full momentum equations do not require this condition
nor if the inner core is forced to rotate arbitrarily. This leads naturally into a full
summary of all boundary conditions.

2.2 Boundary conditions

The matching conditions on the vector potential at the inner core boundary are due
to the continuity of both Br and Bθ. Recalling that B = ∇×A then, across any
radial boundary, we must have both matching of magnetic field and its derivative.

For an insulating mantle, Bp must match an external potential field. Then,
integrating across the boundary, one has that

∇2
φA = 0 (18)

The matching and jump conditions on the toroidal magnetic field, at the core-
mantle boundary, are:

B(o)(Ro, θ, t) = B(m)(Ro, θ, t) (19)

ηo
1

r

∂(rB(o))

∂r

∣∣∣∣
r=R−

o

= ηm
1

r

∂(rB(m))

∂r

∣∣∣∣
r=R+

o

(20)

Similar such conditions exist at the inner-outer core boundary, with ηi = ηo in this
calculation.

The boundary conditions associated with the fluid flow vary between the rapid
rotation limit and fully predictive equations. In both cases, the no-slip condition
for the stream function is

ψ =
∂ψ

∂r
= 0 (21)

Notice that there are no physical boundary conditions for the vorticity in the
streamfunction-vorticity formulation [26].

The toroidal velocity field must take into account the fact that the inner core does
not necessarily co-rotate with the mantle. Also the no-slip boundary conditions on
the flow in steady state at the base of the mantle must be enforced. Thus, we must
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have that

v = ΩiRi sin θ, r= Ri (22)

v = 0, r= Ro (23)

where Ωi is the solid body rotation rate of the inner core.
Clearly, the simple prescription

v = �ΩmRo sin θ, r = Ro (24)

enables us to incorporate the mantle as a boundary condition.

3 The numerical method

The model equations were solved pseudo–spectrally. A thorough review of all
spectral methods was given by Canuto et al. [26]. The algorithmic approach,
developed for the limit of rapid rotation, is structurally similar to Hollerbach [28].
Specific details can be found in Hollerbach and Jones [23] and Hollerbach [28].
However, both deterministic and fully predictive calculations employ a modified
second order semi–implicit Runge Kutta scheme for temporal integration and for
the evaluation of diffusive terms. All boundary conditions are applied here for the
latter algorithm. All non–diffusive terms are solved pseudo–spectrally.

The magnetic field in the inner core is expanded as

A(i)(r
(i)
j , θi, t) =

N1∑
n=1

M1+2∑
m=1

Ã(i)
nm(t)Tm−1(x

(i)
j )P 1

2n−1(cos θi) (25)

B(i)(r
(i)
j , θi, t) =

N1∑
n=1

M1+2∑
m=1

B̃(i)
nm(t)x

(i)
j Tm−1(x

(i)
j )P 1

2n(cos θi) (26)

where all tildes represent spectral coefficients. The subscripts i and j refer to
the collocation points in angle and radius, respectively. The angular grid points
are the N2 zeros of P 1

2N2+1 on (0, 1), using a root finding algorithm, and the
radial collocation points are the M1/2 zeros of TM1+1(x

(i)) on (0, 1). The
additional coefficients in the radial expansion relate to and are determined by
the boundary conditions (as in the outer core expansions below). The radial
domain of the Chebyshev polynomials is mapped according to x(i)j = r

(o)
j /Ri.

Note the expansion in B(i) imposes the correct symmetry in radius. Also, the
radial symmetries are related to the equatorial symmetries, and this condition is
necessary for A(i) to be antisymmetric and for B(i) to be symmetric.

The outer core solution is expanded in a similar manner. Note that there is no
time dependence in the fluid quantities in the limit of rapid rotation. Also the
number of collocation points differs between fluid and magnetic field calculations.
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This is to resolve fluid boundary layers and, also, for proper de-aliasing (viz., [26]).
The collocation grid in radius is established from the M1 zeros of TM1(x

(o)
j ) on

(−1, 1). The domain of the Chebyshev polynomials is mapped according to

r
(o)
j =

Ro +Ri
2

+
Ro −Ri

2
x
(o)
j (27)

Accordingly, all radial derivatives are evaluated, in general, as

dpTm
drp

=
dpTm
dxp

(
dx

dr

)p
(28)

We assume Ri = 1/2, Ro = 3/2. Similar rules apply to the inner core.
The boundary conditions regarding fluid flow are now described in specific

detail. For the limit of rapid rotation we can cast equation (23) as

M2+4∑
m=1

ψ̃nm(−1)m =

M2+4∑
m=1

ψ̃nm(−1)m(m− 1)2 = 0 (29)

at the inner core boundary and

M2+4∑
m=1

ψ̃nm =

M2+4∑
m=1

ψ̃nm(m− 1)2 = 0 (30)

at the outer core boundary. The fully predictive relation is clearly similar.
Since P 1

1 (cos θ) = − sin θ, equation (24) becomes the pair

M2+2∑
m=1

ṽ1m(−1)m = RiΩi (31)

and
M2+2∑
m=1

ṽnm(−1)m = 0, n > 1 (32)

where the first determines Ωi, and the second gives the boundary condition for
n > 1. Ωi is obtained from the evaluation of the instantaneous magnetic torque on
the inner core.

The toroidal velocity field vanishes at the outer core boundary in the case of no
mantle spin-up. Thus,

M ′
2+2∑

m=1

ṽnm = 0 ∀n. (33)

However, for mantle spin-up we must consider equation (23) which, upon
expansion, has the form

ṽn = −Ro�Ωmδ1,n (34)
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which, as with the inner core analysis above, becomes

M ′
2+2∑

m=1

ṽ1m = Ro�Ωm. (35)

remembering that Ωm is the mantle’s angular velocity (there is no summing index
implied). Similar expansions exist for the magnetic field.

4 Model calculations

We are interested in the effect of significant zonal shear at the core-mantle
boundary. We impose a linearly increasing rate of differential rotation on the
steady state α2-dynamo. Differential rotation increased linearly over some 30
ka, the timescale of the Late Pleistocene eustatic sea-level rise, reaching a final
magnitude comparable to the largest toroidal flows found in the steady state α2-
dynamo calculations (one hundred times less than that of westward drift).

Theα2-dynamo is now actually an αω-dynamo with a differing, relatively weak,
ω-effect from those computed without differentially rotating boundaries. Torque
balance in the steady state α2-dynamo produced greater inner core rotation than is
allowed in the present calculation. Accordingly, there is no noteworthy departure
from dynamo action [23]. However, if the final differential rotation rate is raised
to be comparable to westward drift the results become striking. Of tantamount
interest is the reversal of the magnetic field. This event is expanded in Figure 1 for
the toroidal magnetic field. Each panel is at intervals of 6,000 years. Notice that
the inner core appears to help facilitate the reversal. Also observe the migration of
field structures toward the equator, where the toroidal velocity is largest.

The results presented in the previous section would be more reliable if it could
be demonstrated that the timescale of spin-up is more rapid than dt for each
respective calculation. This elicits a simple calculation regarding the transient
inertial effects neglected thus far. This returns the discussion to the central issue
of the communication time of the outer core describable from the fully predictive
model (14) and (15).

A simple calculation was performed in order to reduce the complexity of the
problem by imagining the outer core as a set of rigid concentric shells. This
effectively reduces the mechanics to one dimension. With this simple description
the Alfvén crossing time of the outer core can be estimated. Ro ∼ 10−8 is
consistent with the parameters used above and, accordingly, the time step must
be some 104 times smaller than in all previous calculations. Unfortunately, the
algorithm did not allow calculations to proceed with Ro = E < 10−6, similar
to numerical barrier encountered by others (i.e., [29–30]) using spectral methods.
Note that the production of toroidal magnetic field propagates to the inner core
boundary at roughly the 3/4 point in this calculation, which spans some 120
years. Other runs, for larger Ro, suggest a linear relationship between Ro and
dt as displayed by the evolution equation for v above. This amounts to nothing
more than linearly extrapolating the results calculated for effectively smaller core
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Figure 1: Reversal of the toroidal magnetic field.

geometries (embodied in Ro ∝ 1/L2). Thus, with Ro ∼ 10−8, we expect a core
communication time of less than a year or so, supporting the use of the limit of
rapid rotation within this context.

5 Discussion and conclusions

The current results differ from previous calculations [28] who explored the regime
of higher Reynolds numbers (and a slightly lower Elsasser number) as compared
to this study. Moreover, this calculation suggests that the formation of complicated
Stewartson layers is not expected in the outer core. In addition, the Ekman layers
are confined within the cylinder tangent to the inner core and parallel to the rotation
axis.

Unlike earlier studies, in this investigation we have been concerned with time-
evolving boundary conditions. Because the non-inertial calculations are inherently
time-independent regarding the velocity field, our approach represents some
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aspects of the variation as a sequence of steady states. This aspect requires some
justification.

In the previous section, the final result was an inertial calculation employed to
lend support for the limit of rapid rotation during spin-up. Recall that the smaller
Ro the faster the core communication time. Our employment of an unrealistically
large Rossby number, for numerical tractability, can be interpreted as modeling
a very small “Earth” Ro ∝ 1/ΩL2. It was shown that such calculations
could be linearly extrapolated, beyond our numerical limitations, into the regime
expected for the Earth. For our model Ro ∼ 10−8 suggesting that information
regarding changes in ΔΩm are communicated throughout the entire core on a
timescale of a year. This is on the order of the smallest time step utilized in this
calculation lending support for the use of the deterministic momentum equation.
Also, a constant relative rate of differential rotation, expected to first order during
ice age regression, is a steady state core configuration. A principal issue of
concern is the actual magnitude of inner core lag anticipated during transient
ice age events. To pose it in another way; How fast does the inner core respond
to electromagnetic torques? The moment of inertia of the inner core is roughly
5×1034 kg ·m2. Changing its angular velocity by one part in 10−5 over some 103

years requires roughly 1015N ·m. Evaluation of the net electromagnetic torque
available at the inner core is difficult as our quasi-steady state solution sequences
suggest rapid expulsion of B(i). The transient build-up of toroidal magnetic field
largely determines this torque, and is anticipated to be quite high. Thus, differential
rotation is not expected to be very large. Tentative calculations, including inner
core inertia, support this view. However, definitive conclusions await a more
complete analysis.

When considering these solutions, one must pay special attention toA it is the
only component directly observable from the surface of the Earth. The steady state
calculations of magnetic boundary layer structure, arising from differential outer
core boundary motion, changed significantly with the addition, kinematically, of
the α-effect and buoyant force. Recall that the original steady state results are
greatly affected by the presence of the electrically conducting inner core. Toroidal
magnetic field is rapidly expelled from the inner core as a natural edifice for
satisfying Taylor’s constraint. This was true of both α2- and αω-dynamos [24].

The α2-dynamo appeared to be more stable during spin-up than the αω-dynamo
there were no disordered solutions. However, the magnetic field was observed

to reverse for a differential rotation of mere tenths of a millimeter per second. The
sense of the differential rotation produced reversedB which eventually dominated
the solution. The inner core greatly facilitated this reversal. Strong Hartmann
currents propagating equatorward allowed for the rapid expulsion of the transient
B(i) near the equator. It was annihilated at the equator by its odd half from the
other hemisphere. Note that the time scale for the reversal was some 10 ka
consistent with the paleomagnetic evidence.

In the context of our model calculations the following tentative conclusions can
be drawn. Differential rotation of the outer core boundaries is capable of inducing
significant meridional circulation patterns that, when entering regions of dynamo
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activity, promote violations of Taylor’s constraint and distort the magnetic field
structure, causing disruption of dynamo action. The greater the rate of relative
differential rotation the more pronounced this effect. The point at which the αω-
dynamo solutions become disordered is when the overall shear is comparable to the
westward drift velocity. However, we expect the rate of differential rotation of the
outer core boundaries to remain well below this value given reasonable timescale
(∼ 103 years) for changes in the angular velocity of the mantle. Within the context
of these calculations, however, significant departures of both α2- and αω-dynamo
solutions are observed especially when considering the evolution of A. This
suggests that the regressive episodes of ice age events can trigger departures of
steady state geodynamo activity.
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