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Abstract 

The fundamental problem of turbulence is that of closing the infinite sequence of 
equations that result from the application of Reynolds averaging to the governing 
relations for momentum, heat and mass transfer. These equations model the 
moments of the turbulent probability density, PDF, such as the first, second, 
third, and higher order moments, each equation depending on higher order 
moments. The ability to relate the set of moments of order n to moments of n+1 
would permit closure to a finite system of equations as we could truncate the 
sequence of equations. The concept of the Shannon entropy allows us to model 
the degree of uncertainty of a PDF. The Shannon entropy is related to the 
concept of thermodynamic entropy. The maximum entropy method determines 
the PDF that maximizes the entropy subject to a number of constraints. The most 
usual method is to use a finite number of lower order moments. A maximum 
entropy PDF is often used to approximate the shape of a PDF as the solution has 
desirable features such as being positive definite. The maximum entropy method 
is of great value as an approximation method in general. An examination of the 
behavior of the moments generate from a maximum entropy for a single degree 
of freedom fit to real, turbulent PDFs for velocity, skin-friction, and temperature 
fluctuations have been carried out to examine the methods ability predictive 
capability. In this examination experimentally determined data sets that 
contained data for all moments up to the sixth order were compiled from the 
literature. The maximum entropy method was applied using the first four 
moments. The fifth and sixth moments computed from the maximum entropy 
approximations were compared and found to compare very favorably with those 
measured. The presentation will start with a review of the maximum entropy 
method for a finite number of moments and a discussion of the computational 
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issues that arise. This will be followed by a review of the experimental data used, 
and a comparison of the maximum entropy moments with the experimental data. 
The presentation will conclude with a presentation of the solution to the 
maximum entropy method for up to four degrees of freedom. 
Keywords: turbulence closure, maximum entropy, turbulence modelling, 
turbulent PDF. 

1 Introduction 

The fundamental problem of turbulence is that of closing the infinite sequence of 
equations that result from the application of Reynolds averaging to the governing 
relations for momentum, heat and mass transfer.  These equations model the 
moments of the turbulent probability density, PDF, such as the first, second, 
third, and higher order moments, each equation depending on higher order 
moments.  The ability to relate the set of moments of order n to moments of n+1 
would permit closure to a finite system of equations as we could truncate the 
sequence of equations. 
     The maximum entropy method is of great value as an approximation method 
in general.  An examination of the behaviour of the moments generated from a 
maximum entropy fit to real, turbulent PDFs for velocity, skin-friction, and 
temperature fluctuations have been carried out to examine the methods ability 
predictive capability.   In this examination experimentally determined data sets 
that contained data for all moments up to the sixth order were compiled from the 
literature.  The maximum entropy method was applied using the first four 
moments.  The fifth and sixth moments computed from the maximum entropy 
approximations were compared and found to compare very favourably with 
those measured. 
     The presentation will start with a review of the single degree of freedom 
maximum entropy method for a finite number of moments and a discussion of 
the computational issues that arise.  This will be followed by a review of the 
experimental data used, and a comparison of the maximum entropy moments 
with the experimental data.  We will conclude with the development of a four 
degree of freedom maximum entropy solution. 

2 The Shannon entropy of a probability density function 

The concept of the Shannon entropy allows us to model the degree of uncertainty 
of a PDF for a random variable U, expressed as  p p U , through an integral 

given by 

   ln .s p U p U dU




    

     The concept of the Shannon entropy also applies where the PDF has finite 
support allowing us to consider integrals with finite limits.  The Shannon entropy 
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is related to the concept of thermodynamic entropy as developed by Boltzmann, 
see Atkins [1]. 
     The maximum entropy method determines the PDF that maximizes the 
entropy subject to a number of constraints.  The most usual method is to use a 
finite number of lower order moments.  A maximum entropy PDF is often used 
to approximate the shape of a PDF as the solution has desirable features such as 
being positive definite. 

3 The maximum entropy method for one degree of freedom 

The maximum entropy approximation to ( )p U  yields the maximum entropy 

subject to a set of constraints on the PDF.  The range of possible constraints is 
limitless in general; however we will examine the case where the first n central 
moments have given values. 
     We will note that an implied constraint always applies to any PDF, that is 

  1.p U dU




  

     We also observe that the mean value of U is 

 U Up U dU




   

which is not equal to zero in general.  The central moments are obtained by 
subtracting the mean value to give a new set of continuous random variable 

given by u U U  .  This yields the following formula for the ith moment 

  .i
i u p u du





   

     Here we note that the previous discussion indicates that 0 1   and 1 0   as 

basic minimum constraints for any PDF. 
     We will examine the case which constrains the moments up to the 4th order, 
with the additional requirement that u has bounded support between a  and a .  
The entropy of the PDF is now given by 

ln .
b

a

s p pdu   

     The determination of the PDF that maximizes this integral requires us to turn 
to the calculus of variation.  The PDF that yields the extreme value of the 
entropy requires us to solve Euler’s equation 

0,
y





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where 0 0 1 1 2 2 3 3 3 3lnp p C C C C C             where the   are 

constants.  Hence the equation for p is obtained from 

  2 3 4
0 1 2 3 4ln 1 0.p u u u u

p
             


 

     The general form of p is thus given by 

 
 

  

2 3 4
0 1 1 3 4

2 3 4
0 1 1 3 4

exp 1

exp

exp ,

p u u u u

u u u u

F u

    

    

     

    



 

where 0 01 .    

4 Solving for the coefficients 

Analytical determination of the coefficients for the maximum entropy 
approximation to the PDF requires us to obtain closed form integrals of the 
moments.  Many of these integrals are known to be unknown, so analytical 
solution is not possible.  Hence we must resort to a numerical scheme to solve 
for the coefficients.  The method that was used was based on Newton’s method.  
A linear approximation of any of the moments can be written as follows for 
incremental changes in the coefficients 

0 1 2 3 4
0 1 2 3 4

ˆ ˆ ˆ ˆ ˆ
ˆ .i i d d d d d

          
    
    

     
    

 

     The hat indicates that the moments are for an initial, guessed set of 

coefficients î .  Examination of the partial derivatives shows that they have a 

particularly simple form, 

   ˆ
ˆexp .

b
i ji

i j
j a

x x F x dx



 


 

   

     Hence we obtain the following system of linear equations given by 

0 1 2 3 4 0 0

1 2 3 4 5 1 1 1

2 3 4 5 6 2 2 2

3 4 5 6 7 3 3 3

4 5 6 7 8 4 4 4

ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ .

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

d

d

d

d

d

      
       
       
       
       

     
          
      
     

     
         

 

     The initial values of the 'j s are estimated or guessed and the values of the 

ˆ ' s  are numerically computed.  Then the values of the jd  are computed from 

this equation, finally they are added to the guessed values and the process is 
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repeated if need be.  This iterative procedure can be stopped when either the 
coefficients of the polynomial converge to within some preset precision or the 
estimated moments are accurate to within some preset value. 
     In the numerical scheme that is reported, the iteration were repeated if the 
magnitude of the d  vector divided by the magnitude of the   vector was less 
than 10-4.  Computing the coefficients to a greater accuracy was not examined.  
A similar scheme for terminating the iterations can be based on the computed 
moments. 
     This presentation of the numerical method to solve for the maximum entropy 
problem minimizes some of the numerical problems that have been encountered.  
First the initial values of the coefficients must be chosen with some care for large 
order systems.  The starting guesses that were examined were to make all of the 
coefficients equal to zero, but this caused the initial matrix to be a Hilbert matrix.  
Unfortunately, Hilbert matrices have the well documented property of being ill 
conditioned.  Hence, for a large order approximation, order say 10 or more, we 
might not be able to even start the iteration process.  If the order of the system is 
smaller we can however always use an initial guess that the coefficients are zero.  
Notice that setting the initial values of the coefficients to zero is equivalent to 
guessing that the PDF is uniform on the interval  , .a b  

     The second difficulty that was encountered is that of computing the moments.  
For a distribution that is very smoothly distributed across the interval, virtually 
any numerical integration scheme will work.  The computed moments will be 
accurate with relatively little work.  However, if the distribution is very spiky, 
approaching that of a delta function, the integration will require either an 
inordinate number of intervals or some sort of adaptive method.  Simpson’s 
method with 1000 subintervals was selected to compute the moments for the 
results given here.   It is quite clear that some distributions will tax the accuracy 
of this kind of integration scheme to the point of making the iterations unstable. 
     The final difficulty that was encountered is that of solving the system of 
equations.  For smooth distributions, it has been observed that the system of 
equations is relatively well conditioned, and that the system can be solved using 
Gauss-Jordan elimination.  For very spiky distributions, the system of equations 
is not well conditioned, and the iterative procedure is then unstable.  Singular 
value decomposition must be used to deal with this ill-condition of the matrix.  
The singular value decomposition algorithm that was used for this work is that 
given by Press  et al. [2].  The values of the terms of the diagonal matrix were set 
to zero if they were less that P times the maximum value of the diagonal.  By 
experiment, it was found that P=10-12 was the minimum value of this factor that 
would allow the iterations to proceed stably for all cases that were examined.  If 
P was chosen too large, a solution could be obtained but it would be very 
misleading.  Results of a numerical experiment for values of P that ranged from 
10-6 to 10-12 clearly showed the effect of P being too large. 
     As a concluding remark on the numerics of the maximum entropy 
approximation it should be clearly stated that the method does work and it 
appears to work quite well.  However, there are some difficulties that must be 
carefully addressed in any algorithm that is going to be used to obtain the 
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coefficients of the polynomial.  To repeat, they are the numerical integration of 
the moments, selection of the initial values of the coefficients and ill-condition of 
the generated system of equations.  However, these problems can be 
satisfactorily resolved if they are directly addressed. 
     As a note on the computational efficiency of this scheme we should state that 
most of the computer time was spent performing the integrations.  If the scheme 
is to be made more efficient, we would have to find computationally more 
efficient means of performing the integrations.  Solving the system of equations, 
updating the coefficients and testing for convergence generally took less than 
evaluating even one of the moments.  The number of iterations that must be 
performed is strongly dependent upon the initial guess of the coefficients and the 
final shape of the PDF.  For very narrow distributions close to zero, the scheme 
required in the order of 50 iterations to converge.  It can be hypothesized that 
better starting values could reduce the iteration count significantly.  However, 
there is no a priori means of determining the initial guess.  If one of the moments 
is tracked as the iterations proceed it will appear that the process converges, 
diverges and then converges again.  This is due to all of the moments being fit so 
the behavior of one moment may appear oscillatory. 

5 The maximum entropy for four degrees of freedom 

Assume that  , , ,p U V W   is the probability density function describing the 

turbulent flow as a function of the velocity components (U, V, and W) and the 
pressure,  .  Then the statistical entropy for this PDF is given by 

   , , , ln , , , .s p U V W p U V W dUdVdWd
   

   

         

     For a given set of conditions,  , , ,p U V W  is the function that maximizes s.  

Based on physical considerations we would expect that 0p   when any of the 

variables go to  . 
     The basic requirement for a PDF is that 

 , , , 1.p U V W dUdVdWd
   

   

       

     We will employ  4
1N   constraints on the statistical moments about the 

mean, given by   

 , , , , , ,i j k l
i j k lC u v w p u v w dudvdwd  

   

   

      

where the lower case indicates the fluctuation from the mean, and the i, j, k, and l 
are any integers from 0 through N inclusive. 
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     The known solution to this problem (Weinstock  [3]) is obtained by forming 
the function 

*

01 0 0 0

ln
N N N N

i j k l
ijkl

i j k l

f p p u v w p 
   

    

and solving for 
*

0.
f

p





 

     This yields 
*

0 0 0 0

ln 1 0
N N N N

i j k l
ijkl

i j k l

f
p u v w

p
 

   


    

   

     Thus p is given by 

0 0 0 0

ln 1 .
N N N N

i j k l
ijkl

i j k l

p u v w  
   

   

     Hence the maximum entropy PDF for the stated constraints is given by 

0 1 0 0

exp 1 .
N N N N

i j k l
ijkl

i j k l

p u v w  
   

 
  

 
  

     The constants, ijkl are set so the final PDF has the same moments as given by 

the constraints.  

6 Experimental data 

Experimental data for one-dimensional moments of turbulent flows of order 5 or 
higher are very difficult to find and tend to come from work published in the 
1970’s.  The sources of experimental data used for this work come from the 
following sources.  Antonia and Sreenivasan [4] presented moments up to 8th 
order of the axial and cross-stream velocities and temperature for a turbulent 
heated jet.  Py and Duhamel [5] presented moments up to the 5th order moment 
for the partial derivative of the velocity at the wall as a function of Reynolds 
number for a two-dimensional channel.   The moments up to the 6th order of the 
fluctuating wall shear stress for an eight degree conical were reported by 
Derksen [6]. 

6.1 Comparison to the maximum entropy approximation 

The maximum entropy approximation was applied to the experimental data using 
the measured moments up to and including the fourth as constraints.  In all cases, 
the final predicted movements up to and including the fourth matched to better 
than four decimal places, confirming that the approximation was correct. 
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Table 1:  The maximum entropy and measured fifth order moments. 

Source Meas. Comp. Source Meas. Comp. 
Antonia, 

, 0.00u    
-1.52 -1.34 Py, w , 

Re=1935 

120 117 

Antonia, 
, 0.67u    

0.17 0.22 Py, w , 

Re=2300 

27.9 27.7 

Antonia, 
, 0.89u    

2.28 2.36 Py, w , 

Re=2615 

5.76 4.42 

Antonia, 
, 1.19u    

8.54 9.37 Py, w , 

Re=3500 

4.98 4.50 

Antonia, 
, 1.48u    

39.3 55.2 Py, w , 

Re=5000 

4.37 4.20 

Antonia, 
, 1.63u    

24.5 39.5 Py, w , 

Re=7200 

4.44 4.04 

Antonia, 
, 0.00v    

-0.53 -0.96 Py, w , 

Re=9950 

4.25 3.90 

Antonia, 
, 0.67v    

1.24 1.53 Py, w , 

Re=15000 

4.17 3.84 

Antonia, 
, 0.89v    

3.45 4.22 Derksen, w , 

x=4.62 

9.80 9.10 

Antonia, 
, 1.19v    

9.52 13.0 Derksen, w , 

x=15.59 

5.22 4.98 

Antonia, 
, 1.48v    

37.7 51.2 Derksen, w , 

x=19.58 

3.30 2.97 

Antonia, 
, 1.63v    

74.6 112 Derksen, w , 

x=23.57 

3.94 3.53 

Antonia, 
, 0.00    

-3.35 -3.84 Derksen, w , 

x=31.55 

4.69 4.23 

Antonia, 
, 0.67    

-1.09 -1.51 Derksen, w , 

x=39.53 

4.40 3.86 

Antonia, 
, 0.89    

0.79 0.31 Derksen, w , 

x=50.71 

9.43 8.96 

Antonia, 
, 1.19    

3.80 3.11 Derksen, w , 

x=55.69 

9.55 8.69 

Antonia, 
, 1.48    

20.3 18.1 Derksen, w , 

x=69.46 

7.13 6.75 

Antonia, 
, 1.63    

70.9 64.9 Derksen, w , 

pipe 

1.97 1.87 

Py, w , e=1700 12.3 0.21    
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     The resulting fifth and sixth order moments from the maximum entropy 
approximation are compared to the measured moments in Table 1 for the fifth 
order moments and Table 2 for the sixth order moments.  General agreement 
between the measured and computed fifth order moments is observed with two 
exceptions.  These exceptions are:  (1) The agreement is poor at the outer edge of 
the heated jet, 1.48 and 1.63  ,  This may be due to the flow being highly 

intermittent in this zone.  (2) The Py data at the lowest Reynolds numbers, 1700 
and 1935, also does not agree well, however the agreement is much better as the 
Reynolds number increase.  So this may be due to the flow not being fully 
turbulent. 

Table 2:  The maximum entropy and measured sixth order moments. 

Source Meas. Comp. Source Meas. Comp. 
Antonia, 

, 0.00u    
15.7 15.1 Antonia, 

, 0.89    
7.28 7.30 

Antonia, 
, 0.67u    

12.6 11.9 Antonia, 
, 1.19    

10.0 8.07 

Antonia, 
, 0.89u    

14.2 12.6 Antonia, 
, 1.48    

72.0 55.0 

Antonia, 
, 1.19u    

32.0 31.6 Antonia, 
, 1.63    

358 282 

Antonia, 
, 1.48u    

234 369 Derksen, w , 

x=4.62 

41.1 36.0 

Antonia, 
, 1.63u    

508 878 Derksen, w , 

x=15.59 

22.7 21.8 

Antonia, 
, 0.00v    

17.6 21.6 Derksen, w , 

x=19.58 

18.0 17.5 

Antonia, 
, 0.67v    

14.3 13.7 Derksen, w , 

x=23.57 

18.6 17.2 

Antonia, 
, 0.89v    

19.7 20.3 Derksen, w , 

x=31.55 

20.1 18.3 

Antonia, 
, 1.19v    

44.4 59.0 Derksen, w , 

x=39.53 

18.4 16.5 

Antonia, 
, 1.48v    

223 319 Derksen, w , 

x=50.71 

39.7 36.4 

Antonia, 
, 1.63v    

594 1000 Derksen, w , 

x=55.69 

39.0 33.0 

Antonia, 
, 0.00    

18.7 21.0 Derksen, w , 

x=69.46 

27.6 25.7 

Antonia, 
, 0.67    

9.46 10.1 Derksen, w , 

pipe 

14.3 14.0 
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     The results for the sixth moment mirror those for the fifth moment, however it 
should be noted that no data for the sixth moment was available from the Py 
data. 
     These results indicate that the maximum entropy approximation predictions 
of the fifth and sixth order moments are in general agreement to those obtained 
from measurement where the flow is fully turbulent.  This is an interesting 
observation but further experimental studies would need to be done to confirm 
that turbulence generated PDFs are maximum entropy PDFs that constrain 
moments to the fourth order. 
     One factor that needs careful consideration in further studies is that of the 
uncertainty in measuring the higher order moments.  This mandates the use of 
very large samples, in the order of 100,000 to 1,000,000 samples, to ensure that 
the rare events can be observed. 

7 Conclusions 

The results presented here present a compelling case for assuming that the PDF 
from a turbulent process results in a maximum entropy approximation that 
constrains moments up to the fourth order.  However, it is recognized that more 
study needs to be done to confirm the validity of this statement. 
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