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Abstract 

Flows of variable viscosity fluids have many industrial applications in fluid 
mechanics and in engineering such as pump flows for highly viscous fluids. 
Carrying out a literature survey, it was found that in most cases the fluid 
viscosity is mainly temperature dependent. Numerical investigation of such 
flows involves the solution of the Navier-Stokes equations with an extra 
difficulty arising from the fact that the viscosity is not constant over the flow 
field. This article presents an analytical solution to the Navier-Stokes equations 
for the case of laminar flows in rotating systems with variable viscosity fluids. 
The equations are written in a cylindrical relative frame of reference rotating 
with a constant angular velocity. In the following, appropriate reference 
quantities are chosen to provide the non-dimensional form of the partial 
differential equations. The proposed solution that satisfies the continuity, the 
momentum and the energy equation, is expressed in terms of the Bessel function 
of the first kind and of exponential functions. Carrying out algebraic 
manipulations, it is proven that the proposed solution satisfies all the governing 
equations. Plots of the velocity, pressure and temperature distributions show the 
influence of the radius and of the axial coordinate to the flow field. 
Keywords: variable viscosity, exact solution, Navier-Stokes, incompressible flow, 
laminar flow, Bessel functions. 
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1 Introduction 

Exact solutions of the Navier-Stokes equations are very important not only 
because they are solutions of certain fundamental flows but also because they 
serve as accuracy checks for experimental, numerical, empirical and asymptotic 
methods An excellent review summarizing the basic steady and unsteady flows 
providing their exact solutions is presented by Drazin and Riley [1].  
     These are exact solution methods, treating non-Newtonian fluids, such as 
polymer solutions, special soap solutions, blood, paints, certain oils and greases, 
for which a different model has to be used to account for the non-Newtonian 
behavior. Such a model based on the theory of Oldroyd [2], is described by 
Fetecau [3]. 
     The exact solutions of the Navier-Stokes equations when the viscosity is 
variable are rare, however the literature in which the viscosity is variable is 
dependent upon the space, time, temperature, pressure etc. Martin [4] used for 
the first time an elegant method in the study of the Navier-Stokes equations for 
an incompressible fluid of variable viscosity. Martin reduced the order of the 
governing equations from second order to first order by introducing the vorticity 
function and the generalized energy function.  
     Naeem and Nadeem [5] generalized Martin’s approach to study the steady-
state, plane, variable viscosity, solving the incompressible Navier-Stokes 
equations. They transformed the equations to a new system with viscosity, 
vorticity, speed and energy function. The transformation matrices included the 
unknown functions and helped determine some exact solutions for vortex, radial 
and parallel flows. 
     Naeem [6] presented recently a class of exact solutions of the equations 
governing the steady plane flows of incompressible fluid of variable viscosity for 
an originally specified vorticity distribution. 
     The effects of linearly varying viscosity and thermal conductivity on steady 
free convective flow of a viscous incompressible fluid along an isothermal 
vertical plate in the presence of heat sink were investigated by Mahanti and  
Gaur [7]. The governing equations of continuity, momentum and energy are 
transformed into coupled and non-linear ordinary differential equations using 
similarity transformation and then solved using Runge-Kutta fourth order 
method. 
     Variable viscosity Couette flow was investigated by Makinde and 
Maserumule [8] by solving analytically the Navier-Stokes equations using a 
perturbation method coupled with a Hermite-Padė approximation technique to 
obtain the velocity and temperature distributions. 
     This article presents a method providing analytical solutions to the 
incompressible Navier-Stokes equations. The equations are written in cylindrical 
coordinates suited for applications in rotating machinery flows. It is proven that 
the analytical solutions obtained satisfy the partial differential equations. 
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2 Governing equations 

Considering that the model aims to describe the motion of a Newtonian fluid, the 
Navier-Stokes equations are the governing equations of the problem [9]. It was 
chosen to express the equations in cylindrical coordinates because it is more 
convenient for axisymmetric bodies or rotating systems. Moreover since many 
applications of rotating systems concern fluid rotating machinery such as 
compressors, turbines or pumps, the relative frame of reference is preferred. 
Adopting the relative cylindrical frame of reference, ( , , )r z , the z  axis 

coincides to the axis of rotation, the r  axis is directed radially outwards and 
the   axis is in the peripheral direction and it is rotating with a constant 
rotational speed with the rotor. In this case the relative velocity is linked to the 
absolute velocity and the rotation speed of the relative system of coordinates: 

 V W U W r    
     

 (1) 

where r r z zV v i v i v i      
   

  is the absolute velocity vector, 

r r z zW u i u i u i      
   

  is the relative velocity vector and  U r i  
  

  

is the rotating speed of the relative system of coordinates.  
     The following equation was chosen to express the viscosity in terms of 
temperature, as proposed by Schilling et al. [10]: 

  0 1 T       (2) 

where  β  is the thermal expansion of the fluid. 
     The system of the 3-D Navier-Stokes equations for incompressible flow in 
cylindrical coordinates can be non-dimensionalised by using the following 
parameters: 
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where R  is a characteristic radius of the geometry in consideration, Re and Ec 
are the non-dimensional Reynolds and Eckert numbers based on the rotational 
speed and the radius of the rotor, [9]. 
     Thus, the continuity equation can be written: 
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     Using the above non-dimensional parameters, the r-momentum equation can 
be written: 

 
* * *2 * * 2 * * * 2 *

* *
* * * * *2 * * * *2

1

Re

u u v P H u u u u
u w

R z R R R R R R z

      
                   

 

 
* * * * * *

* *
* * * * * *

1 1 2
2

Re Re Re

H u H w H u
R v

z z z R R R

     
         

     
 (5) 

     The non-dimensional form of the θ-momentum equation is: 
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     The non-dimensional form of the z-momentum equation is: 
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     Using the above non-dimensional parameters, the energy equation is 
becoming: 
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 (8) 

3 Solution of the equations 

Resolving the system of eqns (4) to (8), it was found that the axial velocity *w , 

the radial velocity *u , the tangential velocity *v  can be expressed in terms of 
the functions: 

   **
0

b zw J rb e    (9) 

   **
1

b zu J rb e     (10) 

 *v r   (11) 
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where  0J rb and  1J rb  are the Bessel functions of the first kind and 

2,4056405b   defined in details in [11]. 

     Pressure 
*P , temperature 

*T and viscosity 
*H can be expressed in terms of 

the functions: 
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where the constants 
1 1

,A B
Ec Ec

    

     The above solutions (eqns 9 to 15) are implemented to the system of the non-
dimensional partial differential equations (4) to (8). The governing equations are 
satisfied, as shown below: 

3.1 Continuity equation  

Substituting the solutions for * * *, ,u w v  the continuity equation yields: 
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meaning that the continuity equation is satisfied. 

3.2 R-momentum equation  

Introducing the expressions for the flow velocities * * *, ,u v w , in the r-momentum 

equation, one can see that these expressions satisfy the equation. 
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     The left hand side of the equation is: 
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     Thus, we see that the r-momentum equation satisfies the proposed solution. 
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3.3 Θ-momentum equation  

Introducing the expressions for the flow velocities * * *, ,u v w , in the θ-momentum 

equation, one can see that these expressions satisfy the equation. 
     The left hand side of the equation is: 
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     The right-hand side of the θ-momentum equation is: 
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     Hence the proposed solution satisfies the θ-momentum equation. 
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3.4 Z-momentum equation  

Introducing the expressions for the flow velocities * * *, ,u v w , in the z -momentum 

equation, one can see that these expressions satisfy the equation. 
     The left hand side of the equation is: 
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The term  
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     Substituting the above expressions to the non-dimensional form of the z-
momentum equation, we obtain: 
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which equals the left hand side, meaning that proposed solution for the 
temperature satisfies the z-momentum equation. 

3.5 Energy equation  
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The derivative  
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     Thus the energy equation is: 
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which means that the proposed solution for the temperature satisfies the energy 
equation. 
     The distributions of axial and radial velocity components in terms of the non-
dimensional radius R* for different axial positions  z*, are shown in figure 1. 
One can see that the axial velocity distribution (figure 1a) respects the condition 
that its value is zero at R*=1 for all axial positions z*. Similarly, the radial 
velocity distribution (figure 1b) respects the condition that for all axial positions 
z* its values is zero at R*=0. 
 

 
(a) (b) 

Figure 1: (a) Axial and (b) adial velocity distribution in terms of R*.  

     The temperature and the pressure distributions in terms of the non-
dimensional radius R* for different axial positions, are shown in figure 2. From 
the temperature distribution, it can be seen that at the outer radial boundary 
corresponding at R*=1 all the curves converge to the same value of temperature. 

r
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The fact that from figure 2a we can observe variations of temperature in terms of 
the radius and in terms of axial coordinate, reveals a three-dimensional field of 
the distribution.  
 

 
(a) (b) 

Figure 2: (a) Temperature and (b) ressure distribution in terms of R*.  

     Similar observations occur for the case of the pressure field. The pressure 
variations at the inlet corresponding at z*=0 are negligible, whereas the 
variations are more intense as the axial distance z* increases. 

4 Conclusions 

In this article, an original work has presented an exact solution of the Navier-Stokes 
equations in cylindrical coordinates for incompressible, laminar, axisymmetric, 
viscous flows with constant and variable viscosity. The fluid viscosity was assumed 
to be a function of temperature, as literature survey indicated for flows in rotating 
machinery [10]. It was proven that the solution field consisting of the Bessel 
functions of the first kind and of exponential functions satisfies the continuity 
equation, the equations of motion and the energy equation. It was shown that the 
present method based on Bessel functions can be used to provide reference solutions 
for numerical and empirical methods for flow field predictions in rotating systems 
involving fluids of variable viscosity. 
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